matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Indikatorfunktion
Indikatorfunktion < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Indikatorfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:08 Mo 19.06.2017
Autor: Gina2013

Aufgabe
Geben Sie die Indikator-Funktion des Einheitkreises und der Menge [mm] \Sigma [/mm] = [0,1]x[0,1] an.

Hallo alle zusammen,
ich weiß nicht wie ich die Aufgabe zu lösen habe.
Indikatorfunktion:
[mm] 1_{x\in A}(x)=\begin{cases} 1, & \mbox{für } x \in A \mbox{ } \\ 0, & \mbox sonst \end{cases}.. [/mm]
Einheitskreis : [mm] x^2+y^2=1. [/mm]
Ich dachte wenn die Gleichung nach x umforme: [mm] x=\pm\wurzel{1-y^2}, [/mm] weiter weiß ich leider nicht, wie ich es mit der Indikatorfunktion machen sollte.
Bin sehr dankbar für jede Hilfe.

        
Bezug
Indikatorfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Mo 19.06.2017
Autor: angela.h.b.


> Geben Sie die Indikator-Funktion des Einheitkreises und der
> Menge [mm]\Sigma[/mm] = [0,1]x[0,1] an.
>  Hallo alle zusammen,
>  ich weiß nicht wie ich die Aufgabe zu lösen habe.
>  Indikatorfunktion:
>  [mm]1_{x\in A}(x)=\begin{cases} 1, & \mbox{für } x \in A \mbox{ } \\ 0, & \mbox sonst \end{cases}..[/mm]
>  
> Einheitskreis : [mm]x^2+y^2=1.[/mm]

Hallo,

der Einheitskreis K ist eine Teilmenge des [mm] \IR^2. [/mm]
Für jeden Punkt des Eineitskreises soll die Indikatorfunktion den Funktionswert 1 liefern, und für jeden Punkt außerhalb des Eineitskreises den Funktionswert 0.

Die Indikatormenge ist hier also auf der Menge [mm] \IR^2 [/mm] definiert.
Ich denke, daß Dir dies nicht klar war.

Also

[mm] 1_{(x,y)\in K}(x,y)=\begin{cases} 1, & \mbox{für } x^2+y^2=1 \mbox{ } \\ 0, & \mbox sonst \end{cases} [/mm]

LG Angela

> Ich dachte wenn die Gleichung nach x umforme:
> [mm]x=\pm\wurzel{1-y^2},[/mm] weiter weiß ich leider nicht, wie ich
> es mit der Indikatorfunktion machen sollte.
>  Bin sehr dankbar für jede Hilfe.


Bezug
                
Bezug
Indikatorfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 Mo 19.06.2017
Autor: Gina2013

Super, danke schön, jetzt verstehe ich.
wie ist dann mit der Omega (statt Summenzeichen),
das kartesische Produkt hat die Menge: {(0,0),(0,1),(1,0),(1,1)},
bei (0,0) und(1,1) ist 0 und 1, aber bei (0,1) und (1,0) ?
Viele Grüße Gina

Bezug
                        
Bezug
Indikatorfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Mo 19.06.2017
Autor: angela.h.b.


> $ [mm] \Sigma [/mm] $ = [0,1]x[0,1]

Wir müssen überlegen, welche Punkte in dieser Menge sind.

Dazu mußt Du wissen, wie das Intervall [0,1] definiert ist:
[0,1] enthält alle Zahlen zwischen 0 und 1 inkl. 0 und 1.

In [mm] \Sigma [/mm] sind also die Zahlenpaare (a,b) für die sowohl a als auch b der Menge [0,1] entstammen.
Das sind mehr Paare als die, die Du aufgeschrieben hast...
Zeichne Dir die Menge [mm] \sigma [/mm] mal auf. Du hast nur die Eckpunkte notiert.

LG Angela

Bezug
                                
Bezug
Indikatorfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Mo 19.06.2017
Autor: Gina2013

Ist dann nicht der Einheitskreis?
Und stimmt, sind nur Randpunkte.
Wie kann ich dann alle Zwischenpunkte aufschreiben,
muss ich bestimmt das Intervall von 0 bis 1 benutzen?

Bezug
                                        
Bezug
Indikatorfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Mo 19.06.2017
Autor: fred97


> Ist dann nicht der Einheitskreis?
> Und stimmt, sind nur Randpunkte.
>  Wie kann ich dann alle Zwischenpunkte aufschreiben,
> muss ich bestimmt das Intervall von 0 bis 1 benutzen?

Es sei $ [mm] \Sigma [/mm]  = [0,1] [mm] \times [/mm] [0,1]$.

Dann: $ [mm] \Sigma=\{(x,y) \in \IR^2: 0 \le x \le 1 \wedge 0 \le y \le 1\}$. [/mm]



Bezug
                                                
Bezug
Indikatorfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 Mo 19.06.2017
Autor: Gina2013

Dann wäre die Indikatorfunktion dieser Menge:
[mm] 1_{x,y}\in \IR^2 (x,y)=\begin{cases} 1, & \mbox{für } x\le 1 \text{oder} y\le1 \\ 0, & \mbox {für} x\ge 0,\mbox y\ge0 \end{cases} [/mm]




Bezug
                                                        
Bezug
Indikatorfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Mo 19.06.2017
Autor: angela.h.b.


> Dann wäre die Indikatorfunktion dieser Menge:
> [mm]1_{x,y}\in \IR^2 (x,y)=\begin{cases} 1, & \mbox{für } x\le 1 \text{oder} y\le1 \\ 0, & \mbox {für} x\ge 0,\mbox y\ge 0 \end{cases}[/mm]
>  
>
>  

Wenn es so wäre, wie Du sagst, läge der Punkt (-17| 0.7) in der Menge,
und ebenso die Punkte (5|19) und (0.1|1.5).
Ist das der Fall?

Bevor Du mit der Indikatorfunktion rumwurschtelst, solltest Du Dir mal klar machen, wie die Menge aussieht. Zeichne sie doch mal in ein Koordinatensystem.

LG Angela


Bezug
                                                                
Bezug
Indikatorfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Mo 19.06.2017
Autor: Gina2013

Ja jetzt habe ich gezeichnet und hoffe richtig,
das wäre dann 1/4 von dem Einheitskreis, also der Viereck im II Quadranten, richtig?
Und wie komme ich auf die Indikatorfunktion?
Soll dann statt [mm] x\le [/mm] 1 stehen: [mm] 0\le x\le [/mm] 1?

Bezug
                                                                        
Bezug
Indikatorfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:49 Mo 19.06.2017
Autor: ChopSuey

Hallo Gina,

> Ja jetzt habe ich gezeichnet und hoffe richtig,
> das wäre dann 1/4 von dem Einheitskreis, also der Viereck
> im II Quadranten, richtig?

Du meinst sicher das Viereck. Wenn wir von der Menge

$ [mm] \Sigma [/mm] = [0,1] [mm] \times [/mm] [0,1]$ sprechen, dann hat das mit dem Einheitskreis zunächst nichts zu tun. Die Menge enthält alle Punkte $ (x,y) [mm] \in \IR^2$ [/mm] für die gilt $ (0 [mm] \le [/mm] x [mm] \le [/mm] 1) [mm] \wedge [/mm] (0 [mm] \le [/mm] y [mm] \le [/mm] 1)$

Versuch' dir mal eine Skizze dieser Menge zu zeichnen. II. Quadrant, Viertel und Viereck waren schon ganz gute Stichpunkte. Vielleicht meintest du ja auch das Richtige.


> Und wie komme ich auf die Indikatorfunktion?
>  Soll dann statt [mm]x\le[/mm] 1 stehen: [mm]0\le x\le[/mm] 1?  

Die Indikatorfunktion der Menge $ [mm] \Sigma$ [/mm] ist definiert durch

$ [mm] 1_{\Sigma}(\boldsymbol{x}) =\begin{cases} 1, & \mbox{für } \boldsymbol{x} \in \Sigma \\ 0, & \mbox{für } \boldsymbol{x}\not\in \Sigma \end{cases} [/mm] $

Unser $ [mm] \boldsymbol{x} [/mm] $ ist in diesem Fall ein Vektor [mm] $\boldsymbol{x} [/mm] =(x,y)$ wegen $ [mm] \boldsymbol{x} \in \Sigma \subset \IR^2$ [/mm]

Dann ist deine Indikatorfunktion demnach

$ [mm] 1_{\Sigma}(x,y) =\begin{cases} 1, & \mbox{für } (x,y) \in \Sigma \\ 0, & \mbox{für } (x,y) \not\in \Sigma \end{cases} [/mm] $

also insbesondere

$ [mm] 1_{\Sigma}(x,y) [/mm] = [mm] \begin{cases} 1, & \mbox{für } (0 \le x \le 1) \wedge (0 \le y \le 1) \\ 0, & \mbox{sonst } \end{cases} [/mm] $

Demnach gilt

$ [mm] 1_{\Sigma}(0,3) \mapsto [/mm] 0$ und $ [mm] 1_{\Sigma}\left(1,\frac{1}{2}\right) \mapsto [/mm] 1 $ (d.h. die Indikatorfunktion [mm] $1_{\Sigma}$ [/mm] bildet den Vektor (0,3) gemäß Definition auf die Null und den Vektor [mm] \left(1,\frac{1}{2}\right) [/mm] auf die 1 ab)

Wenn noch was unklar ist, einfach melden

LG,
ChopSuey


Bezug
                                                                                
Bezug
Indikatorfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:48 Do 22.06.2017
Autor: Gina2013

Vielen lieben Dank,
jetzt verstehe ich auch mit dem Vektor.
Es ist einfach super, dass dieses Forum gibt und so nette Leute, die einem helfen!!!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 5h 12m ago 3. mathe_thommy
ULinAAb/Affine Abbildung bestimmen
Status 6h 14m ago 9. HJKweseleit
UAnaR1/Rekursionsgleichung lösen
Status 7h 48m ago 4. Diophant
DiffGlPar/Partielle Ableitung
Status 13h 38m ago 2. Gonozal_IX
UAnaInd/Binomialkoeffizient
Status 13h 41m ago 10. Gonozal_IX
Mengenlehre/Mengenlehre - Operationen
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]