matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Isolierte Singularität bestimm
Isolierte Singularität bestimm < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isolierte Singularität bestimm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 Mo 19.06.2017
Autor: Jellal

Guten Abend,

ich weiß nicht so richtig, wie ich vorgehen muss:

Ich soll die isolierten Singularitäten und deren Art von [mm] i/(z^{4}-1) [/mm] bestimmen.

Nun sind die Singularitäten gerade die 4-ten Einheitswurzeln, alo 1, -1, i und -1.

Aber wie bestimme ich nun die Art? Bei Musterbeispielen mit dem Sin wurde einfach die bekannte Lauren-Entwicklung hergenommen. Aber bei Funktionen dieser Sorte... muss ich die Laurent-Reihe nun erst berechnen, oder geht das auch einfacher? Die Art hängt ja von den Laurent-Koeffizienten ab.


Gruß

Jellal

        
Bezug
Isolierte Singularität bestimm: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Mo 19.06.2017
Autor: leduart

Hallo
[mm] z^4-1=(z^2-1)*(z^2+1) [/mm] weiter zerlegen und Partialbruchzerlegung.
Gruß leduart

Bezug
        
Bezug
Isolierte Singularität bestimm: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:43 Mo 19.06.2017
Autor: Jellal

Hallo Leduart,

Aber damit bestimmt man ja nicht die Art.
Ich hatte die Aufgabe jetzt mit dem Satz gelöst, dass die Funktion f eine Polstelle der Ordnung m hat, wenn die Funktion 1/f eine Nullstelle der Ordnung m hat.

Es sind also alles Polstellen erster Ordnung.


Bei der nächsten Aufgabe: f(z)=(1-cos(z))/sin(z).
Dort gibt es Singularitäten [mm] z_{n}=n\pi [/mm]
Für ungerade n ergeben sich mit obigem Satz wieder Polstellen erster Ordnung.

Aber was mache ich mit geraden n? Ich sehe, dass der Grenzwert für z-->0 zB. existiert, er ist 0. Und im Netz finde ich einen Satz, dass das dann eine hebbare Singularität ist.

Wir hatten aber nur das Kriterium, dass f in jeder Umgebung der hebbaren Singularität beschränkt bleibt.
Kann ich das auch irgendwie benutzen?

Gruß


Bezug
                
Bezug
Isolierte Singularität bestimm: Antwort
Status: (Antwort) fertig Status 
Datum: 00:15 Di 20.06.2017
Autor: HJKweseleit


> Hallo Leduart,
>  
> Aber damit bestimmt man ja nicht die Art.
> Ich hatte die Aufgabe jetzt mit dem Satz gelöst, dass die
> Funktion f eine Polstelle der Ordnung m hat, wenn die
> Funktion 1/f eine Nullstelle der Ordnung m hat.
>  
> Es sind also alles Polstellen erster Ordnung.
>  
>
> Bei der nächsten Aufgabe: f(z)=(1-cos(z))/sin(z).
>  Dort gibt es Singularitäten [mm]z_{n}=n\pi[/mm]
>  Für ungerade n ergeben sich mit obigem Satz wieder
> Polstellen erster Ordnung.
>  
> Aber was mache ich mit geraden n? Ich sehe, dass der
> Grenzwert für z-->0 zB. existiert, er ist 0. Und im Netz
> finde ich einen Satz, dass das dann eine hebbare
> Singularität ist.
>  

Und eine hebbare Singularität kann keine Polstelle sein. Da die Fkt. [mm] 2-\pi-periodisch [/mm] ist, kommt für alle geraden n dasselbe heraus.

> Wir hatten aber nur das Kriterium, dass f in jeder Umgebung
> der hebbaren Singularität beschränkt bleibt.
>  Kann ich das auch irgendwie benutzen?
>  
> Gruß
>  


Bezug
                
Bezug
Isolierte Singularität bestimm: fehlerhaftes "Kriterium"
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:14 Di 20.06.2017
Autor: Al-Chwarizmi


> Wir hatten aber nur das Kriterium, dass f in jeder Umgebung
> der hebbaren Singularität beschränkt bleibt.


Hallo Jellal

So, wie du es hier formulierst, ist das "Kriterium" bestimmt
falsch !  Es müsste doch wohl etwa so lauten:

"Zu jeder Funktion f  (mit den und jenen Voraussetzungen) und
zu jeder ihrer hebbaren Singularitätsstellen [mm] s_i [/mm]  gibt es jeweils
eine Umgebung [mm] U_i [/mm] von [mm] s_i [/mm] , in welcher f beschränkt ist."
"

Vielleicht ist da auch eine Formulierung wie "in jeder genügend
kleinen
Umgebung" - aber eben bestimmt nicht "in jeder Umgebung".

LG  ,    Al-Chwarizmi


Bezug
                        
Bezug
Isolierte Singularität bestimm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:45 Di 20.06.2017
Autor: fred97


> > Wir hatten aber nur das Kriterium, dass f in jeder Umgebung
> > der hebbaren Singularität beschränkt bleibt.
>  
>
> Hallo Jellal
>  
> So, wie du es hier formulierst, ist das "Kriterium"
> bestimmt
>  falsch !  Es müsste doch wohl etwa so lauten:
>  
> "Zu jeder Funktion f  (mit den und jenen Voraussetzungen)
> und
> zu jeder ihrer hebbaren Singularitätsstellen [mm]s_i[/mm]  gibt es
> jeweils
> eine Umgebung [mm]U_i[/mm] von [mm]s_i[/mm] , in welcher f beschränkt ist."
> "
>  
> Vielleicht ist da auch eine Formulierung wie "in jeder
> genügend
> kleinen Umgebung" - aber eben bestimmt nicht "in jeder
> Umgebung".
>  
> LG  ,    Al-Chwarizmi
>    


Hallo Al,

auch so wie Du das oben formuliert hast, ist es nicht richtig.

Sei $ D [mm] \subseteq \IC$ [/mm] offen, [mm] $z_0 \in [/mm] D$ und $f :D [mm] \setminus \{z_0\} \to \IC$ [/mm] holomorph. Dann lautet der Riemannsche Hebbarkeitssatz so:

$f$ hat in [mm] $z_0$ [/mm] eine hebbare Singularität genau dann, wenn es eine punktierte Umgebung [mm] $\{z \in \IC: 0<|z-z_0| < \delta \} \subseteq [/mm] D$ gibt, auf der $f$ beschränkt ist.



Bezug
                
Bezug
Isolierte Singularität bestimm: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mi 21.06.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Isolierte Singularität bestimm: Antwort
Status: (Antwort) fertig Status 
Datum: 09:51 Di 20.06.2017
Autor: fred97

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Es ist $\frac{i}{(z^{4}-1)}=\frac{i}{(z-i)(z+i)(z-1)(z+1)}$. Nun sieht man, dass $i,-i,1$ und $-1$ isolierte Singularitäten sind.

Ist $z_0 \in \{i,-i,1,-1\}$ so gilt:

$\lim_{z \to z_0}(z-z_0)\frac{i}{(z^{4}-1)$ existiert (in \IC).

Somit ist z_0 ein Pol der Ordnung 1.

Bezug
                
Bezug
Isolierte Singularität bestimm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:06 Mo 26.06.2017
Autor: Paivren

die selbe Frage hatte ich auch.

danke für die erklärungen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 8h 44m ago 7. Al-Chwarizmi
S8-10/Logarithmusgleichung
Status 13h 23m ago 3. matux MR Agent
IntTheo/Integrierbarkeit der 1. Abl.
Status 1d 10h 28m ago 13. X3nion
UAnaR1FolgReih/Weierstraß Approximationssatz
Status 1d 11h 45m ago 8. Al-Chwarizmi
LaTeX/Graphenverlauf "verfeinern"
Status 2d ago 4. leduart
UDiffGl/Nullstellen
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]