matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Sonstige Transformationen" - Konvergenz
Konvergenz < Sonstige < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:27 Do 12.10.2017
Autor: mariella22

Aufgabe
Für welche Folgen (an)n∈N gilt die Bedingung ∃N ∈ N so dass ∀ε > 0 |an − a| < ε ∀n > N ?


Hallo,
Ich habe mir überlegt, dass wenn wir ein N fixieren, ab dem für alle Folgeglieder gilt
|an − a| < ε  für alle bliebigen ε > 0. Dann müssen alle diese Folgeglieder - den Grenzwert kleiner sein als ε0. Wobei ε0 das kleinst mögliche ε >0 sei. Da sich ε an null annähert, müssten dann alle Folgeglieded ab N gleich 0 sein. Stimmt das so?
Allerdings schaffe ich es nicht Ein Bsp. für eine Folge zu finden, für die das gelten würde.
Vielen Dank für Tipps!

        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:46 Do 12.10.2017
Autor: Diophant

Hallo,

> Für welche Folgen (an)n∈N gilt die Bedingung ∃N ∈ N
> so dass ∀ε > 0 |an − a| < ε ∀n > N ?

Ich kann mir nicht so recht vorstellen, dass das ein Originalwortlaut einer Übungsaufgabe sein soll. Wenn ich deine Schreibweise richtig interpretiere, so lautet die Antwort schlicht und ergreifend: für alle Folgen, die gegen a konvergieren. Und wenn a beliebig ist, dann sind damit alle konvergenten Folgen gemeint. Denn was du du oben aufgeschrieben hast, ist im Prinzip die Definition der Folgenkonvergenz.

> Hallo,
> Ich habe mir überlegt, dass wenn wir ein N fixieren, ab
> dem für alle Folgeglieder gilt
> |an − a| < ε für alle bliebigen ε > 0. Dann müssen
> alle diese Folgeglieder - den Grenzwert kleiner sein als
> ε0. Wobei ε0 das kleinst mögliche ε >0 sei. Da sich ε
> an null annähert, müssten dann alle Folgeglieded ab N
> gleich 0 sein. Stimmt das so?
> Allerdings schaffe ich es nicht Ein Bsp. für eine Folge
> zu finden, für die das gelten würde.
> Vielen Dank für Tipps!

Du hast das Kriterium noch nicht so ganz verstanden. Vorgegeben wird nicht eine natürliche Zahl N, sondern vorgegeben wird ein [mm]  \varepsilon>0. [/mm] Wenn man für dieses [mm] \varepsilon [/mm] nun zeigen kann, dass es eine natürliche Zahl N und damit ein Folgenglied derart gibt, dass der Abstand dieses und aller weiterer Glieder der Folge kleiner als der Betrag [mm] |a_n-a| [/mm] ist, dann nennt man die Folge konvergent und den Wert a den Grenzwert der Folge.

Einfaches Beispiel (für [mm] n\ge{1}): [/mm]

[mm]a_n= \frac{1}{n}[/mm]

Diese Folge ist eine Nullfolge, d.h. sie besitzt den Grenzwert 0 (man sagt auch gerne: sie strebt gegen Null). Nehmen wir mal ein kleines Epsilon und versuchen uns an dieser Folge:

[mm]\varepsilon=10^{-6} \mtext{Forderung:} \left|a_n-a\right|=\left| \frac{1}{n}-0|= \frac{1}{n}<10^{-6}[/mm]

Die Ungleichung am Ende lösen wir nach n auf:

[mm]\begin{aligned} \frac{1}{n}&<10^{-6}\ \ \gdw\\ n&> \frac{1}{10^{-6}}=10^6\ \ \Rightarrow\\ N&=10^6+1=1000001 \end{aligned}[/mm]

Die Lösung der Ungleichung besagt also, dass alle Folgenglieder ab dem 'Einemillioneinsten' näher bei Null liegen als [mm] 10^{-6}. [/mm] Da man das gleiche hier mit jedem noch so kleinen Epsilon machen kann ist bewiesen, dass es sich um eine Folge mit dem Grenzwert 0 handelt, um eine Nullfolge eben.

EDIT: Das ganze war ein Missverständnis meinerseits. Eine weitere Antwort folgt ja gerade.


Gruß, Diophant

Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 Do 12.10.2017
Autor: mariella22

Hallo,
Danke für die Antwort.
Aber: ich dachte zuerst auch es wäre die "normale" Definition von Konvergenz. Nach Nachfrage beim Dozenten ist das jedoch nicht so. Sondern die Effektoren sind vertauscht.
Sprich Definition von Konvergenz:
Zu einem beliebigen etta suchen wir ein n für das es gilt.

Aber hier ist es: für n> N gilt es für alle etta > 0

Bezug
                        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 Do 12.10.2017
Autor: Diophant

Hallo,

> Hallo,
> Danke für die Antwort.
> Aber: ich dachte zuerst auch es wäre die "normale"
> Definition von Konvergenz. Nach Nachfrage beim Dozenten ist
> das jedoch nicht so.

Ok. Sorry, dann hatte ich dein Anliegen falsch verstanden!


Gruß, Diophant

Bezug
        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Do 12.10.2017
Autor: fred97


> Für welche Folgen (an)n∈N gilt die Bedingung ∃N ∈ N
> so dass ∀ε > 0 |an − a| < ε ∀n > N ?
>  Hallo,
> Ich habe mir überlegt, dass wenn wir ein N fixieren, ab
> dem für alle Folgeglieder gilt
>   |an − a| < ε  für alle bliebigen ε > 0. Dann müssen

> alle diese Folgeglieder - den Grenzwert kleiner sein als
> ε0. Wobei ε0 das kleinst mögliche ε >0 sei. Da sich ε
> an null annähert, müssten dann alle Folgeglieded ab N
> gleich 0 sein. Stimmt das so?
>  Allerdings schaffe ich es nicht Ein Bsp. für eine Folge
> zu finden, für die das gelten würde.
> Vielen Dank für Tipps!


Ich wage einmal eine Interpretation der Aufgabe: gegeben ist also eine reelle Folge [mm] (a_n) [/mm] mit folgender Eigenschaft:

es gibt ein $N [mm] \in \IN$ [/mm] und ein $a [mm] \in \IR$, [/mm] so dass

(*) [mm] $|a_n-a| [/mm] < [mm] \varepsilon$ [/mm] für alle [mm] \varepsilon [/mm] >0 und all n >N.

Die Frage ist nun: für welche Folgen trifft die zu ?

Wir fixieren ein beliebiges und zunächst festes  $m [mm] \in \IN$ [/mm] mit $m>N$

Aus (*) folgt dann:

[mm] $|a_m-a| [/mm] < [mm] \varepsilon$ [/mm] für alle [mm] \varepsilon [/mm] >0 .

Das geht aber nur dann gut, wenn [mm] a_m=a [/mm] ist.

Da  $m>N$ bel. war, folgt: [mm] a_n=a [/mm] für alle n>N.

[mm] (a_n) [/mm] ist also "fast konstant".


Obige Eigenschaft ist also genau für diejenigen Folgen [mm] (a_n) [/mm] erfüllt, die ab einem , von [mm] (a_n) [/mm] abhängigen, Index konstant sind.




Bezug
        
Bezug
Konvergenz: Gleichmäßige Konvergenz
Status: (Antwort) fertig Status 
Datum: 19:09 Do 12.10.2017
Autor: HJKweseleit

Das ganze hat etwas mit gleichmäßiger Konvergenz zu tun, die aber im Allgemeinen für Funktionenfolgen definiert wird.

Schau da mal nach.

Bezug
                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Do 12.10.2017
Autor: tobit09

Hallo HJKweseleit!


Ich erkenne keinen sinnvollen Zusammenhang zwischen der gleichmäßigen Konvergenz von Funktionenfolgen und den hier behandelten bis auf endlich viele "Ausnahme-Glieder" konstanten Folgen reeller Zahlen.

Den einzigen "Zusammenhang", den ich ausmachen kann, besteht darin, dass in beiden Fällen die Definition aus einer anderen Definition durch Vertauschung von Quantoren hervorgeht.

Kannst du mich aufklären? :-)


Viele Grüße
Tobias

Bezug
                        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:40 Do 12.10.2017
Autor: mariella22

Vielen Dank für euere Hilfe!

Bezug
                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 Do 12.10.2017
Autor: fred97


> Das ganze hat etwas mit gleichmäßiger Konvergenz zu tun,
> die aber im Allgemeinen für Funktionenfolgen definiert
> wird.

Mit Verlaub, aber das ist Unfug.


>  
> Schau da mal nach.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 3h 44m ago 3. mathe_thommy
ULinAAb/Affine Abbildung bestimmen
Status 4h 46m ago 9. HJKweseleit
UAnaR1/Rekursionsgleichung lösen
Status 6h 20m ago 4. Diophant
DiffGlPar/Partielle Ableitung
Status 12h 11m ago 2. Gonozal_IX
UAnaInd/Binomialkoeffizient
Status 12h 13m ago 10. Gonozal_IX
Mengenlehre/Mengenlehre - Operationen
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]