matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Projektionsoperator
Projektionsoperator < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Projektionsoperator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Mo 13.11.2017
Autor: sanadros

Aufgabe
Veranschaulichen Sie sich den Sachverhalt aus Aufgabe 4
anhand von V = \IR^{2}, W = {v \in \IR^{2} : a_1 v_1 + a_2 v_2 = 0} mit a_1, a_2 \in \IR gegeben.
(i) Geben Sie [mm] W^{\perp} [/mm] an und stellen Sie W und [mm] W^{\perp} [/mm] grafisch dar.
(ii) Finden Sie die Matrixdarstellungen der Projektionsoperatoren [mm] P_W [/mm] und [mm] P_W^{\perp}?. [/mm]

Also bei i) müsste es ja [mm] a_1 v_1 [/mm] - [mm] a_2 v_2 [/mm] sein.

Bei ii) frage ich mich ob das das vorgehen ist wie auf []Wikipedia ?

        
Bezug
Projektionsoperator: Antwort
Status: (Antwort) fertig Status 
Datum: 23:43 Mo 13.11.2017
Autor: leduart

Hallo
was war denn Aufgabe 4?
und warum  soll es [mm] a_1v_1 -a_2v_2 [/mm] sein ? [mm] a_1 [/mm] und [mm] a_2 [/mm] sind gegeben und können  einzeln .positiv und negativ oder 0 sein.
Gruß leduart

Bezug
                
Bezug
Projektionsoperator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Di 14.11.2017
Autor: sanadros

Aufgabe
Sei V ein Hilbertraum und W [mm] \subset [/mm] V ein abgeschlossener Teilraum. Zu u [mm] \in [/mm] V sei
[mm] w_u \in [/mm] W die Lösung des Variationsproblems
Gesucht [mm] w_u \in [/mm] W : [mm] (w_u, w)_V [/mm] = [mm] (u;w)_V [/mm] für alle w [mm] \in [/mm] W:

Zeigen Sie:
(i) [mm] w_u [/mm] ist wohldefniert und [mm] ||w_u|| \le [/mm] ||u|| (siehe Vorlesung);
(ii) [mm] P_W^{\perp} [/mm] : V [mm] \to [/mm] V , u [mm] \mapsto w_u [/mm] ist ein linearer stetiger Operator mit [mm] ||P_W||_{V \to V} \le [/mm] 1;
(iii) Es gilt [mm] P^2 [/mm] u = Pu (Projektion) und (Pu, v) = (u, Pv) (Orthogonalität).
(iv) [mm] P_{W^{\perp}} [/mm] = I - [mm] P_W [/mm] ist der entsprechende orthogonale Projektor auf das orthogonale Komplement [mm] W^{\perp} [/mm] = {v [mm] \in [/mm] V : (v,w) = 0 [mm] \forall [/mm] w [mm] \in [/mm] W}.
(v) Zeigen Sie, dass V = W [mm] \oplus W^{\perp} [/mm] gilt und dieses Splitting orthogonal ist, d.h., jedes v  [mm] \in [/mm] V lässt sich eindeutig zerlegen in v = [mm] w+w^{\perp} [/mm] mit w [mm] \in [/mm] W und [mm] w^{\perp} \in W^{\perp}. [/mm]
(vi) Zeigen Sie die folgende Variante des Satzes von Pythagoras: [mm] ||v||^2 [/mm] = [mm] ||P_W [/mm] v [mm] ||^2+||P_{W^{\perp}}v||^2. [/mm]
Hinweis: Betrachten Sie zur Veranschaulichung den Fall V = [mm] \IR^2 [/mm] und W [mm] \subset [/mm] V eine Gerade durch den Ursprung und machen Sie eine Skizze; siehe auch Aufgabe 7.

Hier Aufgabe 4.

> Hallo
>   was war denn Aufgabe 4?
>  und warum  soll es [mm]a_1v_1 -a_2v_2[/mm] sein ? [mm]a_1[/mm] und [mm]a_2[/mm] sind
> gegeben und können  einzeln .positiv und negativ oder 0
> sein.
>  Gruß leduart

Also eigentlich meinte ich [mm]a_1v_1 -a_2v_2=0[/mm], wenn natürlich [mm] a_1 [/mm] und [mm] a_2 [/mm] Null werden bekommt man tatsächlich ein Problem, aber wie kann ich das lösen. Für alle anderen Fälle sollte es doch gehen. Denn wenn man [mm] a_1 [/mm] = 1 und [mm] a_2 [/mm] = 1 wählt hat man eine fallende Gerade und sagen wir mal [mm] \hat{a_1} [/mm] = [mm] a_1 [/mm] und [mm] \hat{a_2}=-a_2 [/mm] bekommt man eine steigende gerade welche Senkrecht auf die alte Gerade verläuft.

Bezug
                        
Bezug
Projektionsoperator: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Mi 15.11.2017
Autor: fred97


> Sei V ein Hilbertraum und W [mm]\subset[/mm] V ein abgeschlossener
> Teilraum. Zu u [mm]\in[/mm] V sei
>  [mm]w_u \in[/mm] W die Lösung des Variationsproblems
>  Gesucht [mm]w_u \in[/mm] W : [mm](w_u, w)_V[/mm] = [mm](u;w)_V[/mm] für alle w [mm]\in[/mm]
> W:
>  
> Zeigen Sie:
>  (i) [mm]w_u[/mm] ist wohldefniert und [mm]||w_u|| \le[/mm] ||u|| (siehe
> Vorlesung);
>  (ii) [mm]P_W^{\perp}[/mm] : V [mm]\to[/mm] V , u [mm]\mapsto w_u[/mm] ist ein
> linearer stetiger Operator mit [mm]||P_W||_{V \to V} \le[/mm] 1;
>  (iii) Es gilt [mm]P^2[/mm] u = Pu (Projektion) und (Pu, v) = (u,
> Pv) (Orthogonalität).
>  (iv) [mm]P_{W^{\perp}}[/mm] = I - [mm]P_W[/mm] ist der entsprechende
> orthogonale Projektor auf das orthogonale Komplement
> [mm]W^{\perp}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= {v [mm]\in[/mm] V : (v,w) = 0 [mm]\forall[/mm] w [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

W}.

>  (v) Zeigen Sie, dass V = W [mm]\oplus W^{\perp}[/mm] gilt und
> dieses Splitting orthogonal ist, d.h., jedes v  [mm]\in[/mm] V
> lässt sich eindeutig zerlegen in v = [mm]w+w^{\perp}[/mm] mit w [mm]\in[/mm]
> W und [mm]w^{\perp} \in W^{\perp}.[/mm]
>  (vi) Zeigen Sie die
> folgende Variante des Satzes von Pythagoras: [mm]||v||^2[/mm] =
> [mm]||P_W[/mm] v [mm]||^2+||P_{W^{\perp}}v||^2.[/mm]
>  Hinweis: Betrachten Sie zur Veranschaulichung den Fall V =
> [mm]\IR^2[/mm] und W [mm]\subset[/mm] V eine Gerade durch den Ursprung und
> machen Sie eine Skizze; siehe auch Aufgabe 7.
>  Hier Aufgabe 4.
>  
> > Hallo
>  >   was war denn Aufgabe 4?
>  >  und warum  soll es [mm]a_1v_1 -a_2v_2[/mm] sein ? [mm]a_1[/mm] und [mm]a_2[/mm]
> sind
> > gegeben und können  einzeln .positiv und negativ oder 0
> > sein.
>  >  Gruß leduart
>
> Also eigentlich meinte ich [mm]a_1v_1 -a_2v_2=0[/mm],


Ich kann nur ahnen, was Du meinst, da Du nicht sagst, worauf sich  [mm]a_1v_1 -a_2v_2=0[/mm] bezieht. Wenn ich richtig ahne, ist es falsch, siehe unten .



> wenn
> natürlich [mm]a_1[/mm] und [mm]a_2[/mm] Null werden bekommt man tatsächlich
> ein Problem, aber wie kann ich das lösen. Für alle
> anderen Fälle sollte es doch gehen. Denn wenn man [mm]a_1[/mm] = 1
> und [mm]a_2[/mm] = 1 wählt hat man eine fallende Gerade und sagen
> wir mal [mm]\hat{a_1}[/mm] = [mm]a_1[/mm] und [mm]\hat{a_2}=-a_2[/mm] bekommt man eine
> steigende gerade welche Senkrecht auf die alte Gerade
> verläuft.


Wir haben also [mm] $W=\{(x,y) \in \IR^2: a_1x+a_2y=0\}$ [/mm]

Fall 1: [mm] a_1=a_2=0. [/mm] Dann ist $W= [mm] \IR^2$ [/mm] und damit [mm] $W^{\perp}= \{0\}$ [/mm]

Fall 2: [mm] (a_1,a_2) \ne [/mm] (0,0). Dann ist W eine gerade durch (0,0) ( mit Normalenvektor [mm] (a_1,a_2)). [/mm]

Damit ist  [mm] $W^{\perp}$ [/mm] die Gerade durch (0,0), die orthogonal zu W ist.

Allein mit Schulwissen kann man ausrechnen:

[mm] $W^{\perp}=\{(x,y) \in \IR^2: a_2x-a_1y=0\}$. [/mm]

Zu [mm] P_W: [/mm]

Fall 1: [mm] a_1=a_2=0. [/mm] Dann ist [mm] P_W=I [/mm] (= Identität) und damit [mm] P_{ W^{\perp}}=0. [/mm]


Fall 2: [mm] a_1 \ne [/mm] 0 oder [mm] a_2 \ne [/mm] 0.


Mache Dir klar:

1. [mm] \IR^2=W \oplus W^{\perp}, [/mm]

2. W ist die lineare Hülle von [mm] (a_2,-a_1), [/mm]

2. [mm] W^{\perp} [/mm] ist die lineare Hülle von [mm] (a_1,a_2). [/mm]

Ist nun (x,y) [mm] \in \IR^2, [/mm] so gibt es eindeutig bestimmte u [mm] \in [/mm] W und v [mm] \in W^{\perp} [/mm] mit

(x,y)=u+v.

dann ist (nach Definition): [mm] P_W(x,y)=u. [/mm]

Kommst Du nun klar ?

Bezug
                                
Bezug
Projektionsoperator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:43 Sa 18.11.2017
Autor: sanadros

Naja es ging nicht so gut. Aber habe mal das was ich habe abgegeben.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 6h 35m ago 3. Gonozal_IX
SIntRech/Stammfunktion/Integralfunktion
Status 7h 21m ago 2. matux MR Agent
OpRe/Reihenfolgeproblem
Status 9h 33m ago 56. HJKweseleit
MSons/Kann man beim Roulette verlier
Status 9h 39m ago 4. Son
MaßTheo/Metrischer Raum, Offene Mengen
Status 13h 48m ago 4. M.Rex
UDiskrMath/Türme von Hanoi (4Stäbe)
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]