matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Abbildungen und Matrizen" - Simultan Triangulierbar
Simultan Triangulierbar < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Simultan Triangulierbar: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 05:51 Do 12.01.2017
Autor: Kakury13

Aufgabe
1.) Seien V ein unitärer Vektorraum mit dim(V)=n ∈ N und f,g ∈ L(V,V) mit f◦g=g◦f. Zeigen Sie, dass f und g simultan unitär triangulierbar sind, d.h. es existiert eine ONB B von V , so dass [f]B,B und [g]B,B obere Dreiecksmatrizen sind.

2.) Zeigen Sie, dass die Bedingung f◦g=g◦f in 1.) hinreichend aber nicht notwendig ist, d.h. finden Sie einen unitären Vektorraum V mit dim(V)∈N und f,g ∈ L(V,V)
mit f◦g≠g◦f, so dass f und g simultan triangulierbar sind.

Die 1. hab ich schon gelöst jetzt hab ich aber ein kleines Problem bei der 2. Ich bin mit der Idee rangegangen, dass über Matrizen zu lösen. Allerdings sind ja im komplexen Vektorraum sind sind alle Matrizen trigonalisierbar.
Kann mir vielleicht jemand helfen ne Idee wäre gut.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Simultan Triangulierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 08:18 Fr 13.01.2017
Autor: hippias

[willkommenmr]
Deine Idee war schon ganz gut:
Denk' Dir einfach $2$ obere Dreiecksmatrizen aus und definiere $f$ und $g$ als die entsprechenden Endomorphismus bzgl. Deiner Lieblingsbasis. Dann sind $f$ und $g$ in dieser gemeinsamen Basis trianglierbar.

Berechne nun die Produkte und vergleiche. Sollten $f$ und $g$ wider erwarten kommutieren, nimm andere Zahlen und erhöhe eventuell die Dimension.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 1d 1h 27m ago 8. Gonozal_IX
ULinAMat/Matrixgleichung
Status 1d 1h 55m ago 10. Gonozal_IX
UTopoGeo/Ecken im Projektiven Raum
Status 1d 1h 58m ago 11. Al-Chwarizmi
SDiffRech/Einheiten bei Funktionen
Status 1d 19h 30m ago 4. Chris84
USons/Nabla in Zylinderkoordinaten
Status 1d 20h 02m ago 3. schokoschnecke
SStochWkeit/Anordnungen von Spielsteinen
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]