matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Real Analysis (Single Variable)" - Ungl. binomischer Lehrsatz
Ungl. binomischer Lehrsatz < Real Analysis (Single Variable) < Real Analysis < Uni-Calculus < University < Maths <
View: [ threaded ] | ^ Forum "Analysis des R1"  | ^^ all forums  | ^ Tree of Forums  | materials

Ungl. binomischer Lehrsatz: Frage (beantwortet)
Status: (Question) answered Status 
Date: 15:47 So 13/08/2017
Author: Die_Suedkurve

Hallo,

weiß jemand, warum die Ungleichung
[mm] (a+b)^4 \le 8(a^4 [/mm] + [mm] b^4) [/mm] für a,b [mm] \in \IR [/mm]
gültig ist?

Grüße

        
Bezug
Ungl. binomischer Lehrsatz: Antwort
Status: (Answer) finished Status 
Date: 16:33 So 13/08/2017
Author: HJKweseleit


> Hallo,
>  
> weiß jemand, warum die Ungleichung
>  [mm](a+b)^4 \le 8(a^4[/mm] + [mm]b^4)[/mm] für a,b [mm]\in \IR[/mm]
>  gültig ist?
>  
> Grüße


Betrachte die Funktion [mm] f(x)=(a+x)^4 [/mm] - [mm] 8(a^4+x^4), [/mm] bei der ich einfach obiges b durch x ersetzt und [mm] 8(a^4+x^4) [/mm] auf die andere Seite der Ungleichung gezogen habe.


Es ist

[mm] f'(x)=4(a+x)^3 - 32x^3 [/mm]sowie
[mm]f''(x)=12(a+x)^2 - 96x^2[/mm].

[mm]f'(x)=0 \gdw 4(a+x)^3 - 32x^3=0 \gdw (a+x)^3 - 8x^3=0 \gdw (a+x)^3 = 8x^3 \gdw a+x=2x \gdw a=x[/mm].

Eingesetzt in f'':
[mm]f''(a)=12(a+a)^2 - 96a^2 = 48a^2-96a^2=-48a^2<0[/mm]

[mm] \Rightarrow [/mm] Bei x=a hat die Funktion ein Maximum.

Es ist [mm]f(a)=(a+a)^4 - 8(a^4+a^4)=16a^4-^6a^4=0 [/mm][mm] \Rightarrow [/mm]

Die Funktion ist überall negativ, nur bei x=a ist sie 0 [mm] \Rightarrow [/mm]

[mm](a+x)^4 - 8(a^4+x^4)\le 0 \Rightarrow (a+x)^4 \le 8(a^4+x^4)[/mm]

Jetzt kannst due wieder b für x einsetzen.


Bezug
                
Bezug
Ungl. binomischer Lehrsatz: Mitteilung
Status: (Statement) No reaction required Status 
Date: 21:51 So 13/08/2017
Author: Die_Suedkurve

Hallo HJKweseleit,

zunächst einmal danke für deine Hilfe. Die Anfängervorlesungen habe ich schon lange hinter mir, daher habe ich deinen Beweis fast vollständig verstanden.
Mir ist nur nicht klar, woher du weißt, dass die Funktion f negativ ist, außer in x = a. Dies ist ja quasi eine der Hauptfakten, die man braucht, um meine Aussage zu zeigen.

Ich habe daher deinen Beweis ein wenig abgeändert und bin wie folgt vorgegangen: Wir wissen, dass f in x = a ein lokales Minimum hat. Wenn man jetzt die Randwerte für x gegen - [mm] \infty [/mm] und [mm] \infty [/mm] untersucht, stellt man fest, dass f(x) gegen - [mm] \infty [/mm] divergiert. Daher besitzt f in x = a ein globales Maximum. Somit ist f(x) [mm] \le [/mm] 0 für alle x [mm] \in \IR. [/mm]

Bezug
                        
Bezug
Ungl. binomischer Lehrsatz: Mitteilung
Status: (Statement) No reaction required Status 
Date: 18:52 Mo 14/08/2017
Author: HJKweseleit


> Hallo HJKweseleit,
>  
> zunächst einmal danke für deine Hilfe. Die
> Anfängervorlesungen habe ich schon lange hinter mir, daher
> habe ich deinen Beweis fast vollständig verstanden.
>  Mir ist nur nicht klar, woher du weißt, dass die Funktion
> f negativ ist, außer in x = a.


1. Bei x=a ist f'=0 und f''<0. Das bedeutet, dass die Fkt. hier ein lokales MAXIMUM hat.
2. Die Fkt. ist stetig, f' ebenfalls, und f' hat keine weiteren Nullstellen. Es gibt also keine weiteren lokalen Minima oder Maxima. Daher muss die Fkt. links von x=a steigen und rechts von x=a fallen, dort ist also ein globaler Hochpunkt.
3. f(a)=0, also sind alle Fkt.-Werte links und rechts davon negativ.




Dies ist ja quasi eine der

> Hauptfakten, die man braucht, um meine Aussage zu zeigen.
>  
> Ich habe daher deinen Beweis ein wenig abgeändert und bin
> wie folgt vorgegangen: Wir wissen, dass f in x = a ein
> lokales Minimum MAXIMUM hat. Wenn man jetzt die Randwerte für x
> gegen - [mm]\infty[/mm] und [mm]\infty[/mm] untersucht, stellt man fest, dass
> f(x) gegen - [mm]\infty[/mm] divergiert. Daher besitzt f in x = a
> ein globales Maximum. Somit ist f(x) [mm]\le[/mm] 0 für alle x [mm]\in \IR.[/mm]
>  


Bezug
                                
Bezug
Ungl. binomischer Lehrsatz: Mitteilung
Status: (Statement) No reaction required Status 
Date: 19:54 Mo 14/08/2017
Author: Die_Suedkurve

Okay, das leuchtet doch ein. Danke für die Erklärung.

Bezug
        
Bezug
Ungl. binomischer Lehrsatz: Status?
Status: (Statement) No reaction required Status 
Date: 16:59 So 13/08/2017
Author: HJKweseleit

Hallo Suedkurve,

es ist nicht hilfreich, wenn du deinen mathematischen Background nicht angibst. So kann ich nicht erkennen, ob du mit meiner Lösung mit f' und f'' etwas anfangen kannst. Wenn nicht, melde dich noch mal. Ich kann dir dann eine andere, rein algebraische Lösung anbieten, die aber quasi "von Himmel fällt".

Bezug
                
Bezug
Ungl. binomischer Lehrsatz: Mitteilung
Status: (Statement) No reaction required Status 
Date: 19:56 Mo 14/08/2017
Author: Die_Suedkurve

Habe ich hinzugefügt.

Bezug
        
Bezug
Ungl. binomischer Lehrsatz: Antwort
Status: (Answer) finished Status 
Date: 08:30 Mo 14/08/2017
Author: fred97


> Hallo,
>  
> weiß jemand, warum die Ungleichung
>  [mm](a+b)^4 \le 8(a^4[/mm] + [mm]b^4)[/mm] für a,b [mm]\in \IR[/mm]
>  gültig ist?

Das liegt an Herrn Giovanni Binomi !

Für a,b [mm] \in \IR [/mm] ist [mm] a^2-2ab+b^2 =(a-b)^2 \ge [/mm] 0, also

$2ab [mm] \le a^2+b^2$ [/mm] und somit

(1) [mm] (a+b)^2=a^2+2ab+b^2 \le a^2+a^2+b^2+b^2=2(a^2+b^2)$. [/mm]

Es folgt:

(2) [mm] (a+b)^4 \le 4(a^2+b^2)^2. [/mm]

Mit [mm] a^2 [/mm] statt a und [mm] b^2 [/mm] statt b liefert (1):

[mm] (a^2+b^2)^2 \le 2(a^4+b^4). [/mm]

Zusammen mit (2) ergibt sich

[mm] (a+b)^4 \le 8(a^4+b^4). [/mm]

>  
> Grüße


Bezug
                
Bezug
Ungl. binomischer Lehrsatz: Mitteilung
Status: (Statement) No reaction required Status 
Date: 18:40 Mo 14/08/2017
Author: Die_Suedkurve

Hallo fred97,

danke für deinen Beitrag. Das ist auch ein sehr schöner Beweis, aber da wäre ich niemals drauf gekommen! :)

Grüße
Die_Suedkurve

Bezug
View: [ threaded ] | ^ Forum "Analysis des R1"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status 37m ago 3. Noya
FunkAna/beschränkter linearer Operator
Status 2h 15m ago 25. donp
SAnaSonst/Zylinder aus O und V
Status 5h 28m ago 2. donp
USons/Bedeutung von dx, dt in Formel
Status 5h 32m ago 3. Noya
FunkAna/Jensensche Ungleichung
Status 8h 21m ago 3. Maxi1995
UAnaR1/Reaktion - erwünscht
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]