matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertaufgabe lösen
Anfangswertaufgabe lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertaufgabe lösen: Rückfrage, Korrektur, Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:19 Do 01.02.2018
Autor: Dom_89

Aufgabe
Bestimme die allgemeine Lösung der Anfangswertaufgabe

y'(t) = [mm] \pmat{ 1 & 1 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 3 }y(t) [/mm] ; y(0) = [mm] \vektor{2 \\ 0 \\ 1} [/mm]



Hallo,

hier einmal mein Lösungsansatz:

Ich habe zunächst die Eigenwerte bestimmt mit:

[mm] det(A-\lambda E_{3}) [/mm] = [mm] \vmat{ 1-\lambda & 1 & 0 \\ 4 & 1-\lambda & 0 \\ 0 & 0 & 3-\lambda } [/mm]

Hier kam dann [mm] \lambda_{1} [/mm] = 3 , [mm] \lambda_{2} [/mm] = 3 und [mm] \lambda_{3} [/mm] = -1 raus

Für die Bestimmung der Eigenwerte habe ich dann jeweils die o.g. Werte für [mm] \lambda [/mm] eingesetzt:

[mm] \lambda_{1} [/mm] = 3  [mm] (A-\lambda_{1} E_{3}): \pmat{ -2 & 1 & 0 \\ 4 & -2 & 0 \\ 0 & 0 & 0 } [/mm]

[mm] \vec{x}_{1} [/mm] = [mm] \vektor{\bruch{1}{2} \\ 1 \\ 1} [/mm]

[mm] \lambda_{2} [/mm] = 3  [mm] (A-\lambda_{2} E_{3}): \pmat{ -2 & 1 & 0 \\ 4 & -2 & 0 \\ 0 & 0 & 0 } [/mm]

[mm] \vec{x}_{2} [/mm] = [mm] \vektor{\bruch{1}{2} \\ 1 \\ 1} [/mm]

[mm] \lambda_{3} [/mm] = -1  [mm] (A-\lambda_{3} E_{3}): \pmat{ 2 & 1 & 0 \\ 4 & 4 & 0 \\ 0 & 0 & 6 } [/mm]

[mm] \vec{x}_{3} [/mm] = [mm] \vektor{-\bruch{1}{2} \\ 1 \\ 0} [/mm]

Somit lautet die Lösung dann:

y(t) = [mm] c_{1}e^{3t}\vektor{\bruch{1}{2} \\ 1 \\ 1} [/mm] + [mm] c_{2}e^{3t}\vektor{\bruch{1}{2} \\ 1 \\ 1} [/mm] + [mm] c_{3}e^{-t}\vektor{-\bruch{1}{2} \\ -1 \\ 0} [/mm]

Dann noch den Anfangswert mit einbeziehen:

y(0) = [mm] c_{1}e^{3t}\pmat{ \bruch{1}{2}c_{1} & +\bruch{1}{2}c_{2} & -\bruch{1}{2}c_{3} \\ c_{1} & +c_{2} & +c_{3} \\ c_{1} & +c_{2} } [/mm] = [mm] \vektor{2 \\ 0 \\ 1} [/mm]

An dieser Stelle verstehe ich dann nicht, wie ich "vernünftig" auflösen kann!?

Könntet ihr mit da einen Tipp geben?

Ist meine Lösung ansonsten soweit in Ordnung?


Besten Dank!

        
Bezug
Anfangswertaufgabe lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Do 01.02.2018
Autor: Steffi21

Hallo,

für den Eigenwert -1 bekommst Du

[mm] \pmat{ 2 & 1 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 4} [/mm]

2. Zeile/2. Spalte steht eine 2, berechne 1-(-1)=1+1=2

3. Zeile/3. Spalte steht eine 4, berechne 3-(-1)=3+1=4

Steffi

Bezug
                
Bezug
Anfangswertaufgabe lösen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:56 Fr 02.02.2018
Autor: Dom_89

Hallo,

danke für die Antwort!

Ich habe das nun geändert und erhalte:

y(0) = [mm] c_{1}e^{3t}\pmat{ 2c_{1} & +2c_{2} & +2c_{3} \\ c_{1} & +c_{2} & -c_{3} \\ c_{1} & +c_{2} } [/mm] = [mm] \vektor{2 \\ 0 \\ 1} [/mm]

Mit II folgt: [mm] c_{1}+c_{2}=c_{3} [/mm]

Mit III folgt: [mm] c_{1}+c_{2} [/mm] = 1 => [mm] c_{3} [/mm]  = 1

Mit I folgt: [mm] 2c_{1}+2c_{2}+2c_{3} [/mm] = 2

[mm] 2c_{1}+2c_{2}+2 [/mm] = 2

[mm] 2c_{1}+2c_{2} [/mm] = 0

[mm] 2c_{1} [/mm] = [mm] -2c_{2} [/mm]

[mm] c_{1} [/mm] = [mm] -c_{2} [/mm]

=> [mm] c_{1} [/mm] = 1 ; [mm] c_{2} [/mm] = -1 ; [mm] c_{3} [/mm]  = 1

Ist das so in Ordnung?

Bezug
                        
Bezug
Anfangswertaufgabe lösen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 So 04.02.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Anfangswertaufgabe lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 So 24.06.2018
Autor: HJKweseleit

Die Eigenwerte sind richtig berechnet, die Eigenvektoren aber nicht.

Zu [mm] \lambda= [/mm]  -1 bekommst du richtig $ [mm] \vec{x}_{-1} [/mm] $ = $ [mm] \vektor{-\bruch{1}{2} \\ 1 \\ 0} [/mm] $ oder - um Brüche zu vermeiden - $ [mm] \vec{x}_{-1} [/mm] $ = $ [mm] \vektor{-1 \\ 2 \\ 0} [/mm] $.

Zu [mm] \lambda=3 [/mm] bekommst du aber nicht zwei mal den selben Vektor, sondern die beiden linear unabhängigen Vektoren
$ [mm] \vec{x}_{3,1} [/mm] $ = $ [mm] \vektor{1\\ 2 \\ 0} [/mm] $ sowie $ [mm] \vec{x}_{3,2} [/mm] $ = $ [mm] \vektor{1 \\ 2 \\ 1} [/mm] $ (oder auch $ [mm] \vec{x}_{3,2} [/mm] $ = $ [mm] \vektor{0 \\ 0 \\ 1} [/mm] $ als Differenz der beiden Erstgenannten).

Bezug
                
Bezug
Anfangswertaufgabe lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 Mo 25.06.2018
Autor: Dom_89

Vielen Dank für die Hilfe - hat nun alles so funktioniert, wie es soll !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 3h 10m ago 5. angela.h.b.
SIntRech/Partielle Integration/Substitu
Status 4h 53m ago 5. Takota
UAnaRn/Satz Implizite Funktion System
Status 18h 18m ago 2. HJKweseleit
UFina/Effektiver Zinssatz
Status 1d 3h 47m ago 3. Dom_89
DiffGlGew/Lösung der DGL bestimmen
Status 1d 5h 47m ago 2. Gonozal_IX
UWTheo/Konstruktion von ZV
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]