matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Ordinary Differential Equations" - Anfangswertaufgabe lösen
Anfangswertaufgabe lösen < Ordinary Differential Equations < Differential Equations < Uni-Calculus < University < Maths <
View: [ threaded ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ all forums  | ^ Tree of Forums  | materials

Anfangswertaufgabe lösen: Rückfrage,Korrektur,Tipp,Hilfe
Status: (Question) answered Status 
Date: 16:33 Sa 23/06/2018
Author: Dom_89

Aufgabe
Bestimme die allgemeine Lösung der Anfangswertaufgabe

y'(t) = [mm] \pmat{ 1 & 1 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 3 }y(t) [/mm] ; y(0) = [mm] \vektor{2 \\ 0 \\ 1} [/mm]

Hallo,

hier einmal mein Lösungsansatz:

Ich habe zunächst die Eigenwerte bestimmt mit:

[mm] det(A-\lambda E_{3}) [/mm] = [mm] \vmat{ 1-\lambda & 1 & 0 \\ 4 & 1-\lambda & 0 \\ 0 & 0 & 3-\lambda } [/mm]

Hier kam dann [mm] \lambda_{1} [/mm] = 3 , [mm] \lambda_{2} [/mm] = 3 und [mm] \lambda_{3} [/mm] = -1 raus

Für die Bestimmung der Eigenwerte habe ich dann jeweils die o.g. Werte für [mm] \lambda [/mm] eingesetzt:

[mm] \lambda_{1} [/mm] = 3  [mm] (A-\lambda_{1} E_{3}): \pmat{ -2 & 1 & 0 \\ 4 & -2 & 0 \\ 0 & 0 & 0 } [/mm]

Mit II + 2I folgt:

[mm] \pmat{ -2 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 } [/mm]

Eigenvektor lautet dann:

[mm] \vec{x}_{1} [/mm] = [mm] \vektor{\bruch{1}{2} \\ 1 \\ 1} [/mm]

[mm] \lambda_{2} [/mm] = 3  [mm] (A-\lambda_{2} E_{3}): \pmat{ -2 & 1 & 0 \\ 4 & -2 & 0 \\ 0 & 0 & 0 } [/mm]

Mit II + 2I folgt:

[mm] \pmat{ -2 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 } [/mm]

Eigenvektor lautet dann:

[mm] \vec{x}_{2} [/mm] = [mm] \vektor{\bruch{1}{2} \\ 1 \\ 1} [/mm]

[mm] \lambda_{3} [/mm] = -1  [mm] (A-\lambda_{3} E_{3}): \pmat{ 2 & 1 & 0 \\ 4 & 4 & 0 \\ 0 & 0 & 6 } [/mm]

Mit II - 2I folgt:

[mm] \pmat{ 2 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4 } [/mm]

Eigenvektor lautet dann:

[mm] \vec{x}_{3} [/mm] = [mm] \vektor{-\bruch{1}{2} \\ 1 \\ 0} [/mm]

Somit lautet die Lösung dann:

y(t) = [mm] c_{1}e^{3t}\vektor{\bruch{1}{2} \\ 1 \\ 1} [/mm] + [mm] c_{2}e^{3t}\vektor{\bruch{1}{2} \\ 1 \\ 1} [/mm] + [mm] c_{3}e^{-t}\vektor{-\bruch{1}{2} \\ -1 \\ 0} [/mm]

Dann noch den Anfangswert mit einbeziehen:

y(0) = [mm] c_{1}e^{3t}\pmat{ \bruch{1}{2}c_{1} & +\bruch{1}{2}c_{2} & -\bruch{1}{2}c_{3} \\ c_{1} & +c_{2} & +c_{3} \\ c_{1} & +c_{2} } [/mm] = [mm] \vektor{2 \\ 0 \\ 1} [/mm]

An dieser Stelle verstehe ich dann nicht, wie ich "vernünftig" auflösen kann!?

Könntet ihr mit da einen Tipp geben?

Ist meine Lösung ansonsten soweit in Ordnung?


Vielen Dank für eure Hilfe

        
Bezug
Anfangswertaufgabe lösen: t gleich 0
Status: (Answer) finished Status 
Date: 16:52 Sa 23/06/2018
Author: Infinit

Hallo Dom_89,
für die Anfangsbedingung gilt natürlich [mm] t = 0 [/mm], die Exponentialfunktionen liefern alle den Wert 1 und Du hast drei lineare Gleichungen für drei Unbekannte.
Viele Grüße,
Infinit

Bezug
                
Bezug
Anfangswertaufgabe lösen: Frage (beantwortet)
Status: (Question) answered Status 
Date: 17:11 Sa 23/06/2018
Author: Dom_89

Hallo,

danke für die Antwort!

Mein bisheriger Ansatz:

III

[mm] c_{1}+c_{2} [/mm] = 1

II

[mm] c_{1}+c_{2}+c_{3} [/mm] = 0
[mm] c_{1}+c_{2} [/mm] = - [mm] c_{3} [/mm]
1 =  [mm] -c_{3} [/mm]
-1 =  [mm] c_{3} [/mm]

I

[mm] \bruch{1}{2}c_{1}+\bruch{1}{2}c_{2}-\bruch{1}{2}c_{3} [/mm] = 2
[mm] \bruch{1}{2}c_{1}+\bruch{1}{2}c_{2}+\bruch{1}{2} [/mm] = 2
[mm] \bruch{1}{2}c_{1}+\bruch{1}{2}c_{2} [/mm] = [mm] \bruch{3}{2} [/mm]

Nun komme ich aber nicht mehr so wirklich weiter :(


Bezug
                        
Bezug
Anfangswertaufgabe lösen: Antwort
Status: (Answer) finished Status 
Date: 23:47 Sa 23/06/2018
Author: leduart

Hallo
du hast 2 gleiche Eigenwerte, dann kannst du nicht einfach 2 mal dasselbe hinschreiben! du kasst ja dein C1 und C2 zusammenfassen und hast nur noch 2 Konstanten! also ist die dritte Lösung t*e^(3t)*EV
Gruß ledum

Bezug
        
Bezug
Anfangswertaufgabe lösen: Antwort
Status: (Answer) finished Status 
Date: 10:09 So 24/06/2018
Author: fred97


> Bestimme die allgemeine Lösung der Anfangswertaufgabe
>  
> y'(t) = [mm]\pmat{ 1 & 1 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 3 }y(t)[/mm] ;
> y(0) = [mm]\vektor{2 \\ 0 \\ 1}[/mm]
>  Hallo,
>  
> hier einmal mein Lösungsansatz:
>  
> Ich habe zunächst die Eigenwerte bestimmt mit:
>  
> [mm]det(A-\lambda E_{3})[/mm] = [mm]\vmat{ 1-\lambda & 1 & 0 \\ 4 & 1-\lambda & 0 \\ 0 & 0 & 3-\lambda }[/mm]
>  
> Hier kam dann [mm]\lambda_{1}[/mm] = 3 , [mm]\lambda_{2}[/mm] = 3 und
> [mm]\lambda_{3}[/mm] = -1 raus
>  
> Für die Bestimmung der Eigenwerte habe ich dann jeweils
> die o.g. Werte für [mm]\lambda[/mm] eingesetzt:
>  
> [mm]\lambda_{1}[/mm] = 3  [mm](A-\lambda_{1} E_{3}): \pmat{ -2 & 1 & 0 \\ 4 & -2 & 0 \\ 0 & 0 & 0 }[/mm]
>  
> Mit II + 2I folgt:
>  
> [mm]\pmat{ -2 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 }[/mm]
>  
> Eigenvektor lautet dann:
>  
> [mm]\vec{x}_{1}[/mm] = [mm]\vektor{\bruch{1}{2} \\ 1 \\ 1}[/mm]

Das ist O.K.


>  
> [mm]\lambda_{2}[/mm] = 3  [mm](A-\lambda_{2} E_{3}): \pmat{ -2 & 1 & 0 \\ 4 & -2 & 0 \\ 0 & 0 & 0 }[/mm]
>  
> Mit II + 2I folgt:
>  
> [mm]\pmat{ -2 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 }[/mm]
>  
> Eigenvektor lautet dann:
>  
> [mm]\vec{x}_{2}[/mm] = [mm]\vektor{\bruch{1}{2} \\ 1 \\ 1}[/mm]


Hoppla , fällt Dir denn nicht auf, dass Du das oben schon mal hattest ???

Du hast obiges LGS zur Bestimmung der zu [mm] \lambda=3 [/mm] geh. Eigenvektoren nicht zu Ende gerechnet !

Das mach mal jetzt. Zeige: der von [mm] \lambda=3 [/mm] aufgespannte Eigenraum hat die Basis

   [mm] \vektor{\bruch{1}{2} \\ 1 \\ 1}, \vektor{0 \\ 0 \\ 1}. [/mm]


>  
> [mm]\lambda_{3}[/mm] = -1  [mm](A-\lambda_{3} E_{3}): \pmat{ 2 & 1 & 0 \\ 4 & 4 & 0 \\ 0 & 0 & 6 }[/mm]
>  
> Mit II - 2I folgt:
>  
> [mm]\pmat{ 2 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4 }[/mm]
>  
> Eigenvektor lautet dann:
>  
> [mm]\vec{x}_{3}[/mm] = [mm]\vektor{-\bruch{1}{2} \\ 1 \\ 0}[/mm]
>  
> Somit lautet die Lösung dann:
>  
> y(t) = [mm]c_{1}e^{3t}\vektor{\bruch{1}{2} \\ 1 \\ 1}[/mm] +
> [mm]c_{2}e^{3t}\vektor{\bruch{1}{2} \\ 1 \\ 1}[/mm] +
> [mm]c_{3}e^{-t}\vektor{-\bruch{1}{2} \\ -1 \\ 0}[/mm]

Spätestens jetzt hätte Dir auffallen müssen, dass da was schiefgegangen ist. Siehst Du denn nicht, dass nach [mm] c_1 [/mm] und [mm] c_2 [/mm] jeweils die gleiche Funktion steht ?

Die allgemeine Lösung lautet:

y(t) = [mm]c_{1}e^{3t}\vektor{\bruch{1}{2} \\ 1 \\ 1}[/mm] +[mm]c_{2}e^{3t}\vektor{0 \\ 0\\ 1}[/mm] + [mm]c_{3}e^{-t}\vektor{-\bruch{1}{2} \\ 1 \\ 0}[/mm]


>  
> Dann noch den Anfangswert mit einbeziehen:
>  
> y(0) = [mm]c_{1}e^{3t}\pmat{ \bruch{1}{2}c_{1} & +\bruch{1}{2}c_{2} & -\bruch{1}{2}c_{3} \\ c_{1} & +c_{2} & +c_{3} \\ c_{1} & +c_{2} }[/mm]
> = [mm]\vektor{2 \\ 0 \\ 1}[/mm]
>  
> An dieser Stelle verstehe ich dann nicht, wie ich
> "vernünftig" auflösen kann!?
>  
> Könntet ihr mit da einen Tipp geben?
>  
> Ist meine Lösung ansonsten soweit in Ordnung?
>  
>
> Vielen Dank für eure Hilfe


Bezug
                
Bezug
Anfangswertaufgabe lösen: Frage (beantwortet)
Status: (Question) answered Status 
Date: 15:53 So 24/06/2018
Author: Dom_89

Hallo fred97,

hier nochmal meine überarbeitete Lösung:

[mm] \lambda_{1}=\lambda_{2} [/mm] = 3  [mm] (A-\lambda_{1} E_{3}): \pmat{ -2 & 1 & 0 \\ 4 & -2 & 0 \\ 0 & 0 & 0 } [/mm]
  
Mit II + 2I folgt:
  
[mm] \pmat{ -2 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 } [/mm]

a) Sei [mm] x_{2} [/mm] = 1 [mm] \wedge x_{3} [/mm] = 0

[mm] \vec{x}_{1} [/mm] = [mm] \vektor{\bruch{1}{2} \\ 1 \\ 0} [/mm]

b) a) Sei [mm] x_{2} [/mm] = 0 [mm] \wedge x_{3} [/mm] = 1

[mm] \vec{x}_{2} [/mm] = [mm] \vektor{0 \\ 0 \\ 1} [/mm]

[mm] \lambda_{3} [/mm] = -1 [mm] (A-\lambda_{3} E_{3}): \pmat{ 2 & 1 & 0 \\ 4 & 4 & 0 \\ 0 & 0 & 6 } [/mm]

Mit II - 2I folgt:
  
[mm] \pmat{ 2 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4 } [/mm]

Eigenvektor lautet dann:
  
[mm] \vec{x}_{3} [/mm] = [mm] \vektor{-\bruch{1}{2} \\ 1 \\ 0} [/mm]

Dann lautet die allgemeine Lösung:

y(t) = [mm] c_{1}e^{3t}\vektor{\bruch{1}{2} \\ 1 \\ 0} [/mm] + [mm] c_{2}e^{3t}\vektor{0 \\ 0\\ 1} [/mm] + [mm] c_{3}e^{-t}\vektor{-\bruch{1}{2} \\ 1 \\ 0} [/mm]

Dann noch den Anfangswert mit einbeziehen:
  
y(0) = [mm] c_{1}e^{3t}\pmat{\bruch{1}{2}c_{1} & -\bruch{1}{2}c_{3} \\ c_{1} & +c_{3} \\ c_{2} } [/mm] = [mm] \vektor{2 \\ 0 \\ 1} [/mm]

Dann die Werte für c bestimmt:

[mm] c_{1} [/mm] = 2
[mm] c_{2} [/mm] = 1
[mm] c_{3} [/mm] = -2

Und diese dann noch entsprechend in die Gleichung eingesetzt.


Ist das so in Ordnung ?

Vielen Dank


Bezug
                        
Bezug
Anfangswertaufgabe lösen: Antwort
Status: (Answer) finished Status 
Date: 17:06 So 24/06/2018
Author: fred97


> Hallo fred97,
>  
> hier nochmal meine überarbeitete Lösung:
>  
> [mm]\lambda_{1}=\lambda_{2}[/mm] = 3  [mm](A-\lambda_{1} E_{3}): \pmat{ -2 & 1 & 0 \\ 4 & -2 & 0 \\ 0 & 0 & 0 }[/mm]
>  
>    
> Mit II + 2I folgt:
>
> [mm]\pmat{ -2 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 }[/mm]
>  
> a) Sei [mm]x_{2}[/mm] = 1 [mm]\wedge x_{3}[/mm] = 0
>
> [mm]\vec{x}_{1}[/mm] = [mm]\vektor{\bruch{1}{2} \\ 1 \\ 0}[/mm]
>  
> b) a) Sei [mm]x_{2}[/mm] = 0 [mm]\wedge x_{3}[/mm] = 1
>
> [mm]\vec{x}_{2}[/mm] = [mm]\vektor{0 \\ 0 \\ 1}[/mm]
>  
> [mm]\lambda_{3}[/mm] = -1 [mm](A-\lambda_{3} E_{3}): \pmat{ 2 & 1 & 0 \\ 4 & 4 & 0 \\ 0 & 0 & 6 }[/mm]
>  
> Mit II - 2I folgt:
>
> [mm]\pmat{ 2 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4 }[/mm]
>  
> Eigenvektor lautet dann:
>
> [mm]\vec{x}_{3}[/mm] = [mm]\vektor{-\bruch{1}{2} \\ 1 \\ 0}[/mm]
>
> Dann lautet die allgemeine Lösung:
>
> y(t) = [mm]c_{1}e^{3t}\vektor{\bruch{1}{2} \\ 1 \\ 0}[/mm] +
> [mm]c_{2}e^{3t}\vektor{0 \\ 0\\ 1}[/mm] +
> [mm]c_{3}e^{-t}\vektor{-\bruch{1}{2} \\ 1 \\ 0}[/mm]
>
> Dann noch den Anfangswert mit einbeziehen:
>
> y(0) = [mm]c_{1}e^{3t}\pmat{\bruch{1}{2}c_{1} & -\bruch{1}{2}c_{3} \\ c_{1} & +c_{3} \\ c_{2} }[/mm]
> = [mm]\vektor{2 \\ 0 \\ 1}[/mm]
>  
> Dann die Werte für c bestimmt:
>  
> [mm]c_{1}[/mm] = 2
>  [mm]c_{2}[/mm] = 1
>  [mm]c_{3}[/mm] = -2
>  
> Und diese dann noch entsprechend in die Gleichung
> eingesetzt.
>  
>
> Ist das so in Ordnung ?

Ja.


>  
> Vielen Dank
>    


Bezug
                                
Bezug
Anfangswertaufgabe lösen: Mitteilung
Status: (Statement) No reaction required Status 
Date: 17:12 Mo 25/06/2018
Author: Dom_89

Vielen Dank für die Hilfe

Bezug
View: [ threaded ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status 3h 14m ago 5. angela.h.b.
SIntRech/Partielle Integration/Substitu
Status 4h 57m ago 5. Takota
UAnaRn/Satz Implizite Funktion System
Status 18h 22m ago 2. HJKweseleit
UFina/Effektiver Zinssatz
Status 1d 3h 51m ago 3. Dom_89
DiffGlGew/Lösung der DGL bestimmen
Status 1d 5h 52m ago 2. Gonozal_IX
UWTheo/Konstruktion von ZV
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]