matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Dedekindsche Psi-Funktion
Dedekindsche Psi-Funktion < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dedekindsche Psi-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 Sa 23.06.2018
Autor: mathelernender

Aufgabe
Für n > 2 ist [mm] \psi(n) [/mm] gerade

Hallo,

ich möchte zeigen, dass die Dedekindsche [mm] \psi [/mm] - Funktion für n > 2 gerade ist. Die Definition ist wie folgt:

[mm] \psi(n) [/mm] = 1 für n = 1, für n > 1 ist [mm] \psi(n) [/mm] = n * [mm] \produkt_{p prim, p|n}^{} [/mm] (1 + [mm] \bruch{1}{p}) [/mm]

Ich habe zunächst ein paar Werte eingesetzt und geschaut, ob man dort eine Regelmäßigkeit oder was anderes nützliches sieht.

Was mir soweit aufgefallen ist:
- die Ergebnisse sind ganzzahlig, weil man beim Bruch immer einen der Primfaktoren rauskürzt und somit der Bruch per Konstruktion immer ganzzahlig ist.

Dann hört es allerdings fast auf. Ich habe überlegt, ob es sinnvoll ist, ob man die Anzahl der Primfaktoren für n bestimmt und darüber was rausfinden kann. Also ob man eine gerade oder ungerade Anzahl an PF hat. Aber das scheint bisher nicht zielführend gewesen zu sein. Hat jemand eventuell einen Tipp?

Viele Grüße,
mathelernender

        
Bezug
Dedekindsche Psi-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Sa 23.06.2018
Autor: Diophant

Hallo,

> Für n > 2 ist [mm]\psi(n)[/mm] gerade
> Hallo,

>

> ich möchte zeigen, dass die Dedekindsche [mm]\psi[/mm] - Funktion
> für n > 2 gerade ist. Die Definition ist wie folgt:

>

> [mm]\psi(n)[/mm] = 1 für n = 1, für n > 1 ist [mm]\psi(n)[/mm] = n *
> [mm]\produkt_{p prim, p|n}^{}[/mm] (1 + [mm]\bruch{1}{p})[/mm]

>

> Ich habe zunächst ein paar Werte eingesetzt und geschaut,
> ob man dort eine Regelmäßigkeit oder was anderes
> nützliches sieht.

>

> Was mir soweit aufgefallen ist:
> - die Ergebnisse sind ganzzahlig, weil man beim Bruch
> immer einen der Primfaktoren rauskürzt und somit der Bruch
> per Konstruktion immer ganzzahlig ist.

So trivial es ist, es ist schonmal ein wichtiger Anfang.

> Dann hört es allerdings fast auf. Ich habe überlegt, ob
> es sinnvoll ist, ob man die Anzahl der Primfaktoren für n
> bestimmt und darüber was rausfinden kann. Also ob man eine
> gerade oder ungerade Anzahl an PF hat. Aber das scheint
> bisher nicht zielführend gewesen zu sein. Hat jemand
> eventuell einen Tipp?

Primzahlen haben entweder den Wert 2 oder sie sind ungerade. Weiter ist

[mm]1+ \frac{1}{p}= \frac{p+1}{p}[/mm]

Das bedeutet ganz einfach, dass für alle Primzahlen größer 2 der Zähler des entsprechenden Faktors gerade ist. Das zusammen mit deiner Erkenntnis ergibt dann die Behauptung.


Gruß, Diophant

Bezug
                
Bezug
Dedekindsche Psi-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 Sa 23.06.2018
Autor: mathelernender

Hi,

ich versuche das mal zu papier zu bringen:

Sei n > 2.
n kann in Produkt von PF zerlegt werden:

n = [mm] p_{1}^{\alpha_1} [/mm] * ... *  [mm] p_{r}^{\alpha_r} [/mm]

Nun gilt:

[mm] \psi(n) [/mm] = [mm] \produkt_{p_{i}, 1 \le i \le r}^{} [/mm] (1 + [mm] \bruch{1}{p}) [/mm]

Betrachte 1 + [mm] \bruch{1}{p}: [/mm]

Für p = 2 ist 1 + [mm] \bruch{1}{2} [/mm] = [mm] \bruch{3}{2} [/mm]
Multipliziert man [mm] \bruch{3}{2} [/mm] mit n gilt: [mm] \bruch{(3n)}{2} [/mm] = [mm] 3*n_0 [/mm] mit [mm] n_0 [/mm] = [mm] \bruch{(n)}{2} [/mm] (hier will ich zum Ausdruck bringen, dass ich die 2 aus n rausgekürzt habe...) bzw. der Primfaktor ist aus n verschwunden. Dieser Bruch ist ungerade.

für p > 2 ist 1 + [mm] \bruch{1}{p} [/mm] = [mm] \bruch{1 + p }{p} [/mm] und der Zähler gerade. Multipliziert man das Produkt der Brüche mit n wird jeweils der entschprechende Primfaktor rausgekürzt und es bleibt eine gerade Zahl stehen. Dann haben wir ein Produkt aus geraden Zahlen welches wieder gerade ist.

Insgesamt hat man, falls der Primfaktor 2 in n enthalten ist, ein Produkt aus einer ungeraden Zahl und geraden. Dieses Produkt ist wieder gerade. Es folgt die Behauptung.

Ist das nachvollziehbar / korrekt?

Bezug
                        
Bezug
Dedekindsche Psi-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Sa 23.06.2018
Autor: Diophant

Hallo,

> ich versuche das mal zu papier zu bringen:

>

> Sei n > 2.
> n kann in Produkt von PF zerlegt werden:

>

> n = [mm]p_{1}^{\alpha_1}[/mm] * ... * [mm]p_{r}^{\alpha_r}[/mm]

>

Ja, aber das muss man wohl in diesem Zusammenhang nicht extra erwähnen, würde ich meinen.

> Nun gilt:

>

> [mm]\psi(n)[/mm] = [mm]\produkt_{p_{i}, 1 \le i \le r}^{}[/mm] (1 +
> [mm]\bruch{1}{p})[/mm]

>

Das stimmt in zweierlei Hinsicht nicht:

- du hast den Faktor n vor dem Produkt vergessen
- du suggerierst hier durch die Schreibweise, dass alle Primzahlen, die kleinergleich dem größten Primteiler von n sind, als entsprechender Faktor im Produkt vorkommen. Das stimmt ja aber eben nicht, sondern es kommen nur die vor, für welche in deiner anfänglichen PFZ von n

[mm]\alpha_i>0[/mm]

ist.

> Betrachte 1 + [mm]\bruch{1}{p}:[/mm]

>

> Für p = 2 ist 1 + [mm]\bruch{1}{2}[/mm] = [mm]\bruch{3}{2}[/mm]
> Multipliziert man [mm]\bruch{3}{2}[/mm] mit n gilt: [mm]\bruch{(3n)}{2}[/mm]
> = [mm]3*n_0[/mm] mit [mm]n_0[/mm] = [mm]\bruch{(n)}{2}[/mm] (hier will ich zum
> Ausdruck bringen, dass ich die 2 aus n rausgekürzt
> habe...) bzw. der Primfaktor ist aus n verschwunden. Dieser
> Bruch ist ungerade.

Das ist ein arges Durcheinander. Erstens kannst du ja nicht annehmen, dass n gerade ist, also fällt die 2 i.a. nicht unbedingt durch Kürzen mit dem entsprechenden PF von n heraus, sondern mit einem der Zähler im Produkt. Das ist doch aber alles unnötig, da n>2 betrachtet wird und es hier völlig ausreicht zu erwähnen, dass 3 der einzige ungerade Zähler im Produkt ist (Brüche können nicht gerade oder ungerade sein).

> für p > 2 ist 1 + [mm]\bruch{1}{p}[/mm] = [mm]\bruch{1 + p }{p}[/mm]

Ne, das ist immer so. :-)

> und der
> Zähler gerade.

Ja, genau, das ist wichtig, wie ich schon geschrieben habe.

> Multipliziert man das Produkt der Brüche
> mit n wird jeweils der entschprechende Primfaktor
> rausgekürzt und es bleibt eine gerade Zahl stehen. Dann
> haben wir ein Produkt aus geraden Zahlen welches wieder
> gerade ist.

Das ist so leidlich richtig, aber sehr unglücklich formuliert. Ich versuche mich mal daran:

Für n>2 treten im Produkt bis auf eine Ausnahme nur Brüche mit geradem Zähler auf. Da sämtliche Nenner per Definition n teilen, kürzen sich alle Nenner heraus und daher ist der Funktionswert ganz. Da das Produkt der Zähler gerade Faktoren enthält, ist der Funktionswert damit insbesondere auch gerade.

> Insgesamt hat man, falls der Primfaktor 2 in n enthalten
> ist, ein Produkt aus einer ungeraden Zahl und geraden.
> Dieses Produkt ist wieder gerade. Es folgt die Behauptung.

Wie gesagt: die Fallunterscheidung, ob n gerade ist oder nicht, ist völlig unnötig.


Gruß, Diophant

Bezug
                                
Bezug
Dedekindsche Psi-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:56 Sa 23.06.2018
Autor: mathelernender

Du hast recht, danke für die Korrekturen. Ist zwar immer nicht so schön zu lesen, aber zeigt mir, dass ich nicht wirklich gut mit den Dingen umgehe. Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 32m ago 3. matux MR Agent
SStoc/Münze
Status 34m ago 2. angela.h.b.
SLinGS/Lösungsverhalten LGS
Status 5h 52m ago 2. fred97
UAnaRn/Satz Implizite Funktion System
Status 6h 32m ago 8. matux MR Agent
UTopoGeo/Induzierte Topologie
Status 21h 14m ago 1. Siebenstein
Transformationen/Faltung zeichnerisch lösen
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]