matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Exponentialverteilung
Exponentialverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialverteilung: Herleitung Erwartungswert
Status: (Frage) beantwortet Status 
Datum: 08:09 Mo 13.01.2020
Autor: sancho1980

Hallo,

ich versuche mir den Erwartungswert [mm] \mu [/mm] = [mm] \bruch{1}{k} [/mm] der Exponentialverteilung mit Dichtefunktion

[mm] f(x)=\begin{cases} ke^{-kx}, & \mbox{für } x > 0 \\ 0, & \mbox{für } n \mbox{ sonst} \end{cases} [/mm]

herzuleiten. Jetzt ist f(x) = [mm] ke^{-kx} [/mm] ja nach oben hin unbeschränkt gültig, also müsste man doch [mm] \integral_{0}^{\infty}{x ke^{-kx} dx} [/mm] berechnen. Mein Ansatz war, das über den Grenzwert zu machen. Leider komme ich nicht auf das Ergebnis. Brauche ich hier einen anderen Ansatz oder habe ich mich "nur" verrechnet. Ich kann grad nicht den ganzen Rechenweg abtippen, aber das hier erhalte ich:

[mm] \integral_{0}^{\infty}{x ke^{-kx} dx} [/mm] = [mm] \limes_{g\rightarrow\infty} \integral_{0}^{g}{x ke^{-kx} dx} [/mm] = ... = [mm] \limes_{g\rightarrow\infty} \bruch{g}{e^{kg}} [/mm] - [mm] \bruch{1}{ke^{kg}} [/mm] + 1

        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:41 Mo 13.01.2020
Autor: fred97


> Hallo,
>  
> ich versuche mir den Erwartungswert [mm]\mu[/mm] = [mm]\bruch{1}{k}[/mm] der
> Exponentialverteilung mit Dichtefunktion
>  
> [mm]f(x)=\begin{cases} ke^{-kx}, & \mbox{für } x > 0 \\ 0, & \mbox{für } n \mbox{ sonst} \end{cases}[/mm]


Das soll wohl lauten:

[mm]f(x)=\begin{cases} ke^{-kx}, & \mbox{für } x > 0 \\ 0, & \mbox{für } x \mbox{ sonst} \end{cases}[/mm].

>  
> herzuleiten. Jetzt ist f(x) = [mm]ke^{-kx}[/mm] ja nach oben hin
> unbeschränkt gültig, also müsste man doch
> [mm]\integral_{0}^{\infty}{x ke^{-kx} dx}[/mm] berechnen. Mein
> Ansatz war, das über den Grenzwert zu machen. Leider komme
> ich nicht auf das Ergebnis. Brauche ich hier einen anderen
> Ansatz oder habe ich mich "nur" verrechnet. Ich kann grad
> nicht den ganzen Rechenweg abtippen, aber das hier erhalte
> ich:
>  
> [mm]\integral_{0}^{\infty}{x ke^{-kx} dx}[/mm] =
> [mm]\limes_{g\rightarrow\infty} \integral_{0}^{g}{x ke^{-kx} dx}[/mm]
> = ... = [mm]\limes_{g\rightarrow\infty} \bruch{g}{e^{kg}}[/mm] -
> [mm]\bruch{1}{ke^{kg}}[/mm] + 1


Das stimmt so nicht. Ohne Deine Rechnungen kann ich natürlich nicht sagen, was Du falsch gemacht hast.

Bestimme zunächst eine Stammfunktion von $x [mm] ke^{-kx} [/mm] $ mit partieller Integration.

Eine solche lautet F(x)= [mm] -e^{-kx}(x+ \frac{1}{k}). [/mm]

Dann berechne [mm] $\lim_{g \to \infty}(F(g)-F(0)). [/mm] Heraus kommt [mm] \frac{1}{k} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]