matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Extrema bestimmen
Extrema bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema bestimmen: Rückfrage, Idee, Hilfe, Tipp
Status: (Frage) beantwortet Status 
Datum: 18:25 Mo 18.06.2018
Autor: Dom_89

Aufgabe
Berechne alle Extrema der Funktion f : [mm] \IR^2 \to \IR [/mm] definiert durch

f(x,y) = [mm] x^2-2xy+4y^3 [/mm]

Hallo,

hier einmal mein bisheriges Vorgehen:

[mm] \nabla [/mm] f(x,y) = [mm] \pmat{ 2x-2y \\ -2x+12y^2} [/mm]

Hf(x,y) = [mm] \pmat{ 2 & -2 \\ -2 & 24y } [/mm]

Nun lautet die notwendige Bedingung fx(x,y) = 0 und fy(x,y)

I 2x-2y=0 [mm] \Rightarrow [/mm] x = y
II [mm] -2x+12y^2 [/mm]
=> [mm] 12y^2-2y [/mm] = 0 [mm] \Rightarrow [/mm] y(12y-2)=0 [mm] \Rightarrow y_{1} [/mm] = 0 und [mm] y_{2} [/mm] = [mm] \bruch{1}{6} [/mm]

[mm] x_{1} [/mm] = 0 und [mm] x_{2} [/mm] = [mm] \bruch{1}{6} [/mm]

Somit ergeben sich doch dann zwei Mögliche Extremstellen (0|0) und [mm] (\bruch{1}{6}|\bruch{1}{6}) [/mm]

Wäre das bis hierher in Ordnung?

Vielen Dank für eure Hilfe :)

        
Bezug
Extrema bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Mo 18.06.2018
Autor: Diophant

Hallo,

> Berechne alle Extrema der Funktion f : [mm]\IR^2 \to \IR[/mm]
> definiert durch

>

> f(x,y) = [mm]x^2-2xy+4y^3[/mm]
> Hallo,

>

> hier einmal mein bisheriges Vorgehen:

>

> [mm]\nabla[/mm] f(x,y) = [mm]\pmat{ 2x-2y \\ -2x+12y^2}[/mm]

>

> Hf(x,y) = [mm]\pmat{ 2 & -2 \\ -2 & 24y }[/mm]

>

> Nun lautet die notwendige Bedingung fx(x,y) = 0 und
> fy(x,y)

>

> I 2x-2y=0 [mm]\Rightarrow[/mm] x = y
> II [mm]-2x+12y^2[/mm]
> => [mm]12y^2-2y[/mm] = 0 [mm]\Rightarrow[/mm] y(12y-2)=0 [mm]\Rightarrow y_{1}[/mm] =
> 0 und [mm]y_{2}[/mm] = [mm]\bruch{1}{6}[/mm]

>

> [mm]x_{1}[/mm] = 0 und [mm]x_{2}[/mm] = [mm]\bruch{1}{6}[/mm]

>

> Somit ergeben sich doch dann zwei Mögliche Extremstellen
> (0|0) und [mm](\bruch{1}{6}|\bruch{1}{6})[/mm]

>

> Wäre das bis hierher in Ordnung?

Ja.


Gruß, Diophant

Bezug
                
Bezug
Extrema bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 Di 19.06.2018
Autor: Dom_89

Hallo,

danke für die Antwort!

Die hinreichende Bedingungen sind dann:

Hf(0,0) = [mm] \pmat{ 2 & -2 \\ -2 & 0} [/mm]

[mm] \mu_{1} [/mm] = 2
[mm] \mu_{2} [/mm] = ad - [mm] b^2 [/mm] = 2*0 - [mm] (-2)^2 [/mm] = -4
[mm] \mu_{1}>0 [/mm] und [mm] \mu_{2}<0 [/mm] => Negativ definit == Maximum

f(0,0) = 0

[mm] Hf(\bruch{1}{6},\bruch{1}{6}) [/mm] = [mm] \pmat{ 2 & -2 \\ -2 & 4} [/mm]

[mm] \mu_{1} [/mm] = 2
[mm] \mu_{2} [/mm] = ad - [mm] b^2 [/mm] = 2*4 - [mm] (-2)^2 [/mm] = 4
[mm] \mu_{1}>0 [/mm] und [mm] \mu_{2}>0 [/mm] => Positiv definit == Minimum

[mm] f(\bruch{1}{6},\bruch{1}{6}) [/mm] = [mm] -\bruch{1}{108} [/mm]

Bezug
                        
Bezug
Extrema bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Di 19.06.2018
Autor: fred97


> Hallo,
>  
> danke für die Antwort!
>  
> Die hinreichende Bedingungen sind dann:
>  
> Hf(0,0) = [mm]\pmat{ 2 & -2 \\ -2 & 0}[/mm]
>  
> [mm]\mu_{1}[/mm] = 2
>  [mm]\mu_{2}[/mm] = ad - [mm]b^2[/mm] = 2*0 - [mm](-2)^2[/mm] = -4
>  [mm]\mu_{1}>0[/mm] und [mm]\mu_{2}<0[/mm] => Negativ definit == Maximum

Das stimmt nicht [mm] H_f(0,0) [/mm] is indefinit !


>  
> f(0,0) = 0
>  
> [mm]Hf(\bruch{1}{6},\bruch{1}{6})[/mm] = [mm]\pmat{ 2 & -2 \\ -2 & 4}[/mm]
>  
> [mm]\mu_{1}[/mm] = 2
>  [mm]\mu_{2}[/mm] = ad - [mm]b^2[/mm] = 2*4 - [mm](-2)^2[/mm] = 4
>  [mm]\mu_{1}>0[/mm] und [mm]\mu_{2}>0[/mm] => Positiv definit == Minimum

Das stimmt.


>  
> [mm]f(\bruch{1}{6},\bruch{1}{6})[/mm] = [mm]-\bruch{1}{108}[/mm]  


Bezug
                                
Bezug
Extrema bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 19.06.2018
Autor: Dom_89

Hallo fred97,

habe meinen Fehler gesehen und nun stimmt es auch bei mir - vielen Dank für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 27m ago 3. matux MR Agent
SStoc/Münze
Status 29m ago 2. angela.h.b.
SLinGS/Lösungsverhalten LGS
Status 5h 47m ago 2. fred97
UAnaRn/Satz Implizite Funktion System
Status 6h 27m ago 8. matux MR Agent
UTopoGeo/Induzierte Topologie
Status 21h 09m ago 1. Siebenstein
Transformationen/Faltung zeichnerisch lösen
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]