matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - Jensensche Ungleichung
Jensensche Ungleichung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jensensche Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 So 20.05.2018
Autor: Noya

Aufgabe
Sei [mm] \Omega \subseteq \IR^N [/mm] (N [mm] \in \IN) [/mm] beschränkt und [mm] j:\IR \to [0,\infty) [/mm] eine konvexe Funktion. Zeige, dass
[mm] j(\bruch{1}{|\Omega|}\int_{\Omega}{fdx})\le \bruch{1}{|\Omega|}\int_{\Omega}{j(f)dx} [/mm]
für alle f [mm] \in L^1(\Omega) [/mm]

Hallo ihr Lieben,

zuerst unsere Definitonen :
[mm] L^p(\Omega)=\{f: \Omega \to \IR: f \text{ messbar und } \parallel f \parallel_{L^p}<\infty\} [/mm]
und [mm] \parallel [/mm] f [mm] \parallel_{L^p}=(\int_{\Omega}{|f(x)|^pdx)^{\bruch{1}{p}}} [/mm]

ehrlich gesagt, weiß ich nicht so genau wie ich hier vorgehen sollen.
Kann man hier jemand einen Tipp/Hinweis geben??

Liebe Grüße und vielen Dank
Noya

        
Bezug
Jensensche Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 So 20.05.2018
Autor: fred97


> Sei [mm]\Omega \subseteq \IR^N[/mm] (N [mm]\in \IN)[/mm] beschränkt und
> [mm]j:\IR \to [0,\infty)[/mm] eine konvexe Funktion. Zeige, dass
>  [mm]j(\bruch{1}{|\Omega|}\int_{\Omega}{fdx})\le \bruch{1}{|\Omega|}\int_{\Omega}{j(f)dx}[/mm]
>  
> für alle f [mm]\in L^1(\Omega)[/mm]
>  Hallo ihr Lieben,
>  
> zuerst unsere Definitonen :
>  [mm]L^p(\Omega)=\{f: \Omega \to \IR: f \text{ messbar und } \parallel f \parallel_{L^p}<\infty\}[/mm]
>  
> und [mm]\parallel[/mm] f
> [mm]\parallel_{L^p}=(\int_{\Omega}{|f(x)|^pdx)^{\bruch{1}{p}}}[/mm]
>  
> ehrlich gesagt, weiß ich nicht so genau wie ich hier
> vorgehen sollen.
>  Kann man hier jemand einen Tipp/Hinweis geben??


Habt Ihr das tatsächlich als Übungsaufgabe bekommen ? Derjenige, der sich das ausgedacht hat, muss ein Vollpfosten sein !

Als Übungsaufgabe ist das viel zu schwer ! Daher:

https://math.unibas.ch/uploads/x4epersdb/files/Kapitel6.pdf

Satz 6.7

>  
> Liebe Grüße und vielen Dank
>  Noya


Bezug
                
Bezug
Jensensche Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 Mo 21.05.2018
Autor: Noya

Vielen Dank.

Ja die Aufgabe ist als Übungsaufgabe gestellt und gibt nur 4/20Punkten bei 4 Aufgaben.

Muss den Beweis noch durcharbeiten, werde mich dann bei Fragen dazu nochmal melden!

Schöne Pfingsten

Noya

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 10m ago 6. Dom_89
UAnaRn/Extrema bestimmen
Status 1h 35m ago 1. Ataaga
SGeradEbene/Abstand eines Punktes
Status 1h 48m ago 5. Dom_89
ULinAAb/Kern und Bild bestimmen
Status 2h 13m ago 3. Dom_89
DiffGlGew/Anwenden der Substitution
Status 5h 12m ago 2. fred97
IntTheo/mehrdim. part. Int., Doppelint
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]