matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Maximumsnorm als Grenzfall
Maximumsnorm als Grenzfall < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximumsnorm als Grenzfall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Sa 30.11.2019
Autor: Boogie2015

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Guten Vormittag, ich möchte gerne wissen, warum $\lim\limits_{ p \rightarrow \infty} \vert \vert x \vert \vert_{p} = \lim\limits_{ p \rightarrow \infty}\left (  \sum\limits_{j = 1}^{d} \vert x_{j} \vert ^{p} \right)^{\frac{1}{p}} = max_{j = 1, \ldos, d} \vert x_{j} \vert = \vert \vert x \vert \vert_{\infty}$ gilt.


Ich habe mir dazu den Beweis auf Wikipedia angeschaut, also  diesen:

________________________________________________________________________________________________________________________________

$\lim _{p\rightarrow \infty }\left(\sum _{i=1}^{n}|x_{i}|^{p}\right)^{1/p}\!\!\!\!\!=\|x\|_{\infty }\cdot \lim _{p\rightarrow \infty }\left(\sum _{i=1}^{n}\left({\frac {|x_{i}|}{\|x\|_{\infty }}}\right)^{p}\right)^{1/p}\!\!\!\!\!=\|x\|_{\infty }\cdot \lim _{p\rightarrow \infty }S^{1/p}=\|x\|_{\infty }}$,

da für die Summe $1 \leq S \leq n$ gilt und somit der Grenzwert von $ \sqrt[p]{S}$ für $ p\rightarrow \infty $ gleich Eins ist. Die untere Schranke von $S$ wird dabei für einen Vektor angenommen, dessen Komponenten bis auf eine alle gleich Null sind, und die obere Schranke$n$ für einen Vektor, dessen Komponenten alle den gleichen Betrag besitzen.  Durch Weglassen des Limes ist so auch ersichtlich, dass die Maximumsnorm niemals größer als die $p$ -Normen ist.


________________________________________________________________________________________________________________________________

Den Beweis dazu habe ich eigentlich ganz gut verstanden, aber der ist noch nicht so richtig intuitiv, weil da mit $\frac{\vert \vert x \vert \vert_{\infty}}{\vert \vert x \vert \vert_{\infty}}$ gespielt wird.

Ich meine, die künstliche $1$ fügt man nur hinzu, weil man am Ende eh weiß, dass der Grenzwert eben die Maximumsnorm ist. Aber das wusste man ja am Anfang nicht. Daher hätten sie nicht auf so einem Ansatz kommen können.


Meine Frage ist: Wie komme ich auf den selben Grenzwert, ohne mitten in der Rechnung das Maximum aller Beträge zu erhalten oder eine derartige künstliche $1$ hinzuzufügen?


Ich hoffe, ihr wisst, was ich meine.


Wie schaffe ich es also auf natürlichem Weg, die Gleichung $\lim _{p\rightarrow \infty }\left(\sum _{i=1}^{n}|x_{i}|^{p}\right)^{1/p}\!\!\!\!\! = \|x\|_{\infty }}$ zu zeigen?




Ich würde z.B. so anfangen:


$\lim _{p\rightarrow \infty }\left(\sum _{i=1}^{n}|x_{i}|^{p}\right)^{1/p}\!\!\!\!\! = \lim _{p\rightarrow \infty }  \sqrt[p]{\vert x_{1} \vert^{p} + \vert x_{2} \vert^{p} + \vert x_{3} \vert^{p} +  \ldots + \vert x_{d} \vert^{p}} =  \lim _{p\rightarrow \infty }  \sqrt[p]{\vert x_{1} \vert^{p} \left 1 +\frac{\vert x_{2} \vert^{p}}{\vert x_{1} \vert^{p}} + \frac{\vert x_{3} \vert^{p}}{\vert x_{1} \vert^{p}} + \ldots + \frac{\vert x_{d} \vert^{p}}{\vert x_{1} \vert^{p}} \right )} = \lim _{p\rightarrow \infty }  \sqrt[p]{\vert x_{1} \vert^{p} \left ( 1 + \left ( \frac{\vert x_{2} \vert }{\vert x_{1} \vert} \right )^{p} + \left ( \frac{\vert x_{3} \vert }{\vert x_{1} \vert} \right )^{p} + \ldots + \left ( \frac{\vert x_{d} \vert }{\vert x_{1} \vert} \right )^{p} \right )}$


$ = \lim _{p\rightarrow \infty }  \vert x_{1} \vert \cdot   \sqrt[p]{ \left ( 1 + \left ( \frac{\vert x_{2} \vert }{\vert x_{1} \vert} \right )^{p} + \left ( \frac{\vert x_{3} \vert }{\vert x_{1} \vert} \right )^{p} + \ldots + \left ( \frac{\vert x_{d} \vert }{\vert x_{1} \vert} \right )^{p} \right )}$

Und so weiter. Aber das wird eine ewige Rechnung. Gibt es andere Methoden?





lg, boogie

        
Bezug
Maximumsnorm als Grenzfall: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 Sa 30.11.2019
Autor: fred97

Was mit S gemeint ist, hast du nicht  gesagt.

Ich beweise obige Grenzwertbeziehung so, dabei  genügt es, den  Fall d=2  zu betrachten ( die Idee für den allgemeinen Fall dürfte dann klar sein.)

Seien  a und b nichtnegative Zahlen und a [mm] \le [/mm] b. Es folgt

$b [mm] \le (b^{p}+a^{p})^{1/p} \le (2b^{p})^{1/p}=2^{1/p}b. [/mm] $

mit $p [mm] \to \infty [/mm]  $ folgt das Resultat.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]