matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mengenlehre" - Mengenlehre
Mengenlehre < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenlehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Mi 11.07.2018
Autor: meister_quitte

Aufgabe
Seien M, X, Y nichtleere Mengen und A, B, C, D, Teilmengen von M. Man beweise oder widerlege:

a) [mm] $\left( A \backslash B \right) \cup \left( C \backslash D \right)=\left( A\cup C \right) \backslash \left( B \backslash D \right)$ [/mm]

b) $A [mm] \backslash \left( B \cup C \right)=\left( A \backslash B \right) \cap \left( A\backslash C \right)$ [/mm]

c) Zu jeder Teilmenge $Z [mm] \subseteq [/mm] X [mm] \times [/mm] Y$ existieren Teilmengen [mm] $Z_1 \subseteq [/mm] X$ und [mm] $Z_2 \subseteq [/mm] Y$ derart, dass $Z = [mm] Z_1 \times Z_2 [/mm] $

Guten Morgen Freunde der Mathematik,

ich wollte gerne wissen, ob ich die Beweise richtig geführt habe. Beim letzten Beweis bin ich mir nicht ganz so sicher. Vielen Dank schon mal für eure Mühen.

Mit freundlichem Gruß

Christoph

a) $x [mm] \in \left( A \backslash B \right) \cup \left( C \backslash D \right) [/mm] = x [mm] \in \left( A \backslash B \right) \vee [/mm] x [mm] \in \left( C \backslash D \right)= [/mm] x [mm] \in [/mm] A [mm] \wedge [/mm]  x [mm] \not\in [/mm] B [mm] \vee [/mm] x [mm] \in [/mm] C [mm] \wedge [/mm] x [mm] \not\in [/mm] D = x [mm] \in [/mm] A [mm] \vee [/mm] x [mm] \in [/mm] C [mm] \wedge [/mm] x [mm] \not\in [/mm] B [mm] \wedge [/mm] x [mm] \not\in [/mm] D=x [mm] \in \left( A\cup C \right) \wedge [/mm] x [mm] \not\in \left( B \backslash D \right)=x \in \left( A\cup C \right) \backslash \left( B \backslash D \right) [/mm] $

b) $x [mm] \in [/mm] A [mm] \backslash \left( B \cup C \right)=x \in [/mm] A [mm] \wedge \left( x \not\in B \vee x \not\in C \right)=x \in [/mm] A [mm] \wedge [/mm] x [mm] \not\in [/mm] B [mm] \vee [/mm] x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \not\in [/mm] C=x [mm] \in \left( A \backslash B \right) \cup [/mm] x [mm] \in \left( A\backslash C \right)=x \in \left( A \backslash B \right) \cup \left( A\backslash C \right) \not=x \in \left( A \backslash B \right) \cap \left( A\backslash C \right)$ [/mm]

c) $(x,y) [mm] \in [/mm] Z  [mm] \subseteq [/mm] X [mm] \times [/mm] Y [mm] \Rightarrow [/mm] x [mm] \in [/mm] X [mm] \wedge [/mm] y [mm] \in [/mm] Y [mm] \Rightarrow$ [/mm] wegen $(x,y) [mm] \in [/mm] Z : x [mm] \in Z_1 \wedge [/mm] y [mm] \in Z_2$ [/mm]

        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Mi 11.07.2018
Autor: ChopSuey

Hallo,

> Seien M, X, Y nichtleere Mengen und A, B, C, D, Teilmengen
> von M. Man beweise oder widerlege:
>  
> a) [mm]\left( A \backslash B \right) \cup \left( C \backslash D \right)=\left( A\cup C \right) \backslash \left( B \backslash D \right)[/mm]
>  
>  
> b) [mm]A \backslash \left( B \cup C \right)=\left( A \backslash B \right) \cap \left( A\backslash C \right)[/mm]
>  
> c) Zu jeder Teilmenge [mm]Z \subseteq X \times Y[/mm] existieren
> Teilmengen [mm]Z_1 \subseteq X[/mm] und [mm]Z_2 \subseteq Y[/mm] derart, dass
> [mm]Z = Z_1 \times Z_2[/mm]
>  Guten Morgen Freunde der Mathematik,
>  
> ich wollte gerne wissen, ob ich die Beweise richtig
> geführt habe. Beim letzten Beweis bin ich mir nicht ganz
> so sicher. Vielen Dank schon mal für eure Mühen.
>  
> Mit freundlichem Gruß
>  
> Christoph
>  
> a) [mm]x \in \left( A \backslash B \right) \cup \left( C \backslash D \right) = x \in \left( A \backslash B \right) \vee x \in \left( C \backslash D \right)= x \in A \wedge x \not\in B \vee x \in C \wedge x \not\in D = x \in A \vee x \in C \wedge x \not\in B \wedge x \not\in D=x \in \left( A\cup C \right) \wedge x \not\in \left( B \backslash D \right)=x \in \left( A\cup C \right) \backslash \left( B \backslash D \right)[/mm]
>  

Die Gleichheitszeichen sind sinnfrei in diesem Kontext. Das ist keine Gleichung sondern eine Implikation bzw. Äquivalenz die du zeigen möchtest.

Also:

$ x [mm] \in \left( A \backslash B \right) \cup \left( C \backslash D \right) \gdw [/mm] x [mm] \in \left( A \backslash B \right) \vee [/mm] x [mm] \in \left( C \backslash D \right) [/mm] ... $

Die logischen Verknüpfungen sind in Ordnung.

> b) [mm]x \in A \backslash \left( B \cup C \right)=x \in A \wedge \left( x \not\in B \vee x \not\in C \right)=x \in A \wedge x \not\in B \vee x \in A \wedge x \not\in C=x \in \left( A \backslash B \right) \cup x \in \left( A\backslash C \right)=x \in \left( A \backslash B \right) \cup \left( A\backslash C \right) \not=x \in \left( A \backslash B \right) \cap \left( A\backslash C \right)[/mm]


Hier gilt natürlich dasselbe. Ich hätte zunächst begonnen mit

$x [mm] \in [/mm] A [mm] \backslash \left( B \cup C \right) \gdw [/mm] x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \not\in (B\cup [/mm] C) ... $

>  
> c) [mm](x,y) \in Z \subseteq X \times Y \Rightarrow x \in X \wedge y \in Y \Rightarrow[/mm]
> wegen [mm](x,y) \in Z : x \in Z_1 \wedge y \in Z_2[/mm]

Nein, die erste Implikation stimmt i.A. nicht. Wo kommen [mm] $Z_1$ [/mm] und [mm] $Z_2$ [/mm] plötzlich her?

Seien $X,Y [mm] \not= \emptyset [/mm] $ und $ Z [mm] \subseteq [/mm] X [mm] \times [/mm] Y$

Es ist $ X [mm] \times [/mm] Y  [mm] \supseteq [/mm] Z= [mm] \left\{(x,y) \mid (x \in Z \cap X) \wedge (y \in Z \cap Y) \right\}$ [/mm]

Bezeichne $ [mm] Z_1 [/mm] := Z [mm] \cap [/mm] X$ sowie [mm] $Z_2 [/mm] := Z [mm] \cap [/mm] Y$. Es gilt nach Definition von [mm] $Z_1,Z_2$ [/mm] ganz offensichtlich [mm] $Z_1 \subseteq [/mm] X$ und [mm] $Z_2 \subseteq [/mm] Y$ und insbesondere $Z = (Z [mm] \cap X)\times [/mm] (Z [mm] \cap [/mm] Y) = [mm] Z_1 \times Z_2 \Box$ [/mm]

LG,
ChopSuey

Bezug
                
Bezug
Mengenlehre: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:35 Do 12.07.2018
Autor: meister_quitte

Vielen Dank !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 3h 04m ago 5. angela.h.b.
SIntRech/Partielle Integration/Substitu
Status 4h 47m ago 5. Takota
UAnaRn/Satz Implizite Funktion System
Status 18h 11m ago 2. HJKweseleit
UFina/Effektiver Zinssatz
Status 1d 3h 41m ago 3. Dom_89
DiffGlGew/Lösung der DGL bestimmen
Status 1d 5h 41m ago 2. Gonozal_IX
UWTheo/Konstruktion von ZV
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]