matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - mehrdim. part. Int., Doppelint
mehrdim. part. Int., Doppelint < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mehrdim. part. Int., Doppelint: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:49 Di 19.06.2018
Autor: Annkristin

Hallo zusammen, ich habe mehrere Doppelintegrale über zwei Funktionen mit 2 Variabeln die ich gerne mittels partieller Integration lösen möchte. Konkreter sieht das ganze zum Beispiel so aus:

$ [mm] \iint_{\Omega} \partial_x [/mm] u(x,y) ~ [mm] \partial_y [/mm] v(x,y) ~ dx dy $

wobei $ u(x,y), v(x,y) $ von [mm] $\mathbb{R} \times \mathbb{R} [/mm] nach [mm] $\mathbb{R}$ [/mm] abbilden. [mm] $\Omega$ [/mm] ist $[0,1]×[0,1] $.

Wie löse ich diese nun? Erst das innere Integral mittels p.I. und dann das äußere?

Über Hilfe und Hinweise würde ich mich sehr freuen :-)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
mehrdim. part. Int., Doppelint: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:18 Di 19.06.2018
Autor: fred97


> Hallo zusammen, ich habe mehrere Doppelintegrale über zwei
> Funktionen mit 2 Variabeln die ich gerne mittels partieller
> Integration lösen möchte. Konkreter sieht das ganze zum
> Beispiel so aus:
>
> [mm]\iint_{\Omega} \partial_x u(x,y) ~ \partial_y v(x,y) ~ dx dy[/mm]
>  
> wobei $ u(x,y), v(x,y) $ von [mm]$\mathbb{R} \times \mathbb{R}[/mm]
> nach [mm]$\mathbb{R}$[/mm] abbilden.
>  
> Wie löse ich diese nun? Erst das innere Integral mittels
> p.I. und dann das äußere?
>  
> Über Hilfe und Hinweise würde ich mich sehr freuen :-)

Es is $ [mm] \Omega \subset \IR^2$. [/mm] Wie sieht denn [mm] \Omega [/mm] genau aus ?


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
mehrdim. part. Int., Doppelint: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:30 Mi 20.06.2018
Autor: Annkristin

Danke für den Hinweis, habe meine Frage gerade aktualisiert.

Bezug
                        
Bezug
mehrdim. part. Int., Doppelint: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:34 Mi 20.06.2018
Autor: leduart

Hallol
Dein Gebiet ist doch sehr eigenartig, kannst du das noch mal kontrollieren? Warum schreibst du nicht eine konkrete Aufgabe?
Gruß ledum

Bezug
                                
Bezug
mehrdim. part. Int., Doppelint: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:29 Do 21.06.2018
Autor: Annkristin

Was genau meinst du mit eigenartig?

Also das Ganze ist Teil einer Minimierungsaufgabe und ich will die natürlichen Randbedingungen herleiten. u ist die unbekannte Funktion und v eine Testfunktion. Ich habe dann [mm] $\limes_{\epsilon \rightarrow 0} \bruch{f(u+ \epsilon v) - f(u)}{\epsilon}$ [/mm] gebildet und konnte einiges kürzen. Einige Integrale der oben genannten Art bleiben aber noch übrig und die würde ich gerne weiter ausrechnen.

Bezug
                                        
Bezug
mehrdim. part. Int., Doppelint: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Sa 23.06.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
mehrdim. part. Int., Doppelint: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:25 Do 21.06.2018
Autor: fred97


> Danke für den Hinweis, habe meine Frage gerade
> aktualisiert.

O.K, jetzt ist $ [mm] \Omega [/mm] =[0,1] [mm] \times [/mm] [0,1]$, ein sehr einfacher Integrationsbereich.

Nächste Frage: sind u und v zweimal stetig differenzierbar ?


Bezug
                                
Bezug
mehrdim. part. Int., Doppelint: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:41 Do 21.06.2018
Autor: Annkristin


>  
> Nächste Frage: sind u und v zweimal stetig differenzierbar
> ?
>  

Ja, u und v sind zweimal stetig differenzierbar.

Bezug
        
Bezug
mehrdim. part. Int., Doppelint: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Mi 27.06.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 31m ago 3. matux MR Agent
SStoc/Münze
Status 33m ago 2. angela.h.b.
SLinGS/Lösungsverhalten LGS
Status 5h 51m ago 2. fred97
UAnaRn/Satz Implizite Funktion System
Status 6h 31m ago 8. matux MR Agent
UTopoGeo/Induzierte Topologie
Status 21h 14m ago 1. Siebenstein
Transformationen/Faltung zeichnerisch lösen
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]