matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - unendlicher Würfelwurf Aufgabe
unendlicher Würfelwurf Aufgabe < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unendlicher Würfelwurf Aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:36 Sa 14.07.2018
Autor: mathnoob9

Aufgabe
Betrachten sie den [mm] \infty [/mm] - fachen unabhängigen Wurf eines fairen Würfels.Für n [mm] \in \IN [/mm]
seien [mm] X_n [/mm] die im Zeitpunkt n geworfene Augenzahl.
Bestimmen sie die Verteilung von T=inf{ k [mm] \in \IN [/mm]  : X_2k-1 + X_2k=5 }

Hey Leute,

Komme bei dieser Aufgabe nicht weiter , ich verstehe garnicht was für eine Verteilung ich hier bestimmen soll.
Hat die Aufgabe etwas mit stochastischen Prozessen zutun?

Danke!

        
Bezug
unendlicher Würfelwurf Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Sa 14.07.2018
Autor: HJKweseleit

Am schönsten bei diesen Aufgaben ist immer die "präzise" Aufgabenstellung, die man erst nach 5-fachem Durchlesen versteht...

Die Aufgabe heißt:
Du würfelst mit einem Würfel und fasst immer zwei Würfe als geordnetes Paar auf, nämlich den Wurf mit der Nummer 2k-1 und den mit der Nummer 2k, also für

k=1: Wurf 1 und 2
k=2: Wurf 3 und 4
...

und wartest, bis zum ersten Mal (=inf, Infimum) die Augensumme dieser beiden Würfe 5 ist.

Also:
Wie w. ist es, dass das erste Paar die Augensumme 5 hat? (T(1))
Wie w. ist es, dass das zweite Paar die Augensumme 5 hat, die 5 aber nicht schon vorher auftrat? (T(2))
Wie w. ist es, dass das dritte Paar die Augensumme 5 hat, die 5 aber nicht schon vorher auftrat? (T(3))
...


Bezug
                
Bezug
unendlicher Würfelwurf Aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:05 So 15.07.2018
Autor: mathnoob9

Hola,

danke für die TIpps und das übersetzen der Aufgabe^^

Diese Parre von Würfel Würfen würde ich als Werfen von 2 Würfeln auffassen.

Dann gilt für den 1. Wurf der beiden Würfel.
Die WK um die AS 5 zu erzielen beträgt 5/36 mit den Möglichkeiten:
(1,4);(4,1);(2,3);(3,2);(2,3)

Im n-ten Wurf gilt dann die WK das bisher nie die AS 5 erzielt wurde * der WK für die AS=5

also errechnet man die WK für den n-ten Wurf mit:

[mm] P[X=n]=(31/36)^n [/mm] * (5/36)

korrekt?

Bezug
                        
Bezug
unendlicher Würfelwurf Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 So 15.07.2018
Autor: angela.h.b.


> Hola,

>

> danke für die TIpps und das übersetzen der Aufgabe^^

>

> Diese Parre von Würfel Würfen würde ich als Werfen von 2
> Würfeln auffassen.

>

> Dann gilt für den 1. Wurf der beiden Würfel.
> Die WK um die AS 5 zu erzielen beträgt 5/36 mit den
> Möglichkeiten:
> (1,4);(4,1);(2,3);(3,2);(2,3)

Hallo,

>

> Im n-ten Wurf gilt dann die WK das bisher nie die AS 5
> erzielt wurde * der WK für die AS=5

"Bisher nie" bedeutet doch, daß (n-1)-mal eine andere Augensumme erzielt wurde.
Beim n-ten Wurf hat man dann die Augensumme 5.

>

> also errechnet man die WK für den n-ten Wurf mit:

>

> [mm]P[X=n]=(31/36)^{n\red{-1}}[/mm] * (5/36)

EDIT: beachte HJKweseleits Hinweis!

LG Angela
>

> korrekt?


Bezug
                        
Bezug
unendlicher Würfelwurf Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Mo 16.07.2018
Autor: HJKweseleit


> Hola,
>  
> danke für die TIpps und das übersetzen der Aufgabe^^
>  
> Diese Parre von Würfel Würfen würde ich als Werfen von 2
> Würfeln auffassen.
>  
> Dann gilt für den 1. Wurf der beiden Würfel.
>  Die WK um die AS 5 zu erzielen beträgt 5/36 mit den
> Möglichkeiten:
>  (1,4);(4,1);(2,3);(3,2);(2,3)

Vorsicht: Du hast (2,3) doppelt dabei. Die W. für Augensumme 5 beträgt [mm] \bruch{4}{36}= \bruch{1}{9}. [/mm]

Tipp: Wenn du am Schluss alle W. zusammenzählst, muss 1 herauskommen, weil theoretisch bei [mm] \infty [/mm] vielen Würfen irgendwann immer die Augensumme 5 erscheint. Du solltest zu Übungszwecken die entsprechende geometrische Reihe berechnen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 3h 06m ago 5. angela.h.b.
SIntRech/Partielle Integration/Substitu
Status 4h 49m ago 5. Takota
UAnaRn/Satz Implizite Funktion System
Status 18h 14m ago 2. HJKweseleit
UFina/Effektiver Zinssatz
Status 1d 3h 43m ago 3. Dom_89
DiffGlGew/Lösung der DGL bestimmen
Status 1d 5h 43m ago 2. Gonozal_IX
UWTheo/Konstruktion von ZV
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]