matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Existenz des Polynoms
Existenz des Polynoms < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz des Polynoms: Korrektur, Tipp
Status: (Frage) beantwortet Status 
Datum: 19:12 Mi 23.05.2018
Autor: Tanja11

Aufgabe
Es sei A eine quadratische konstante Matrix und λ [mm] \notin [/mm] σ(A) kein Eigenwert von A. Weiter bezeichne
p = p(t) := [mm] \sum_{j=0}^k a_j t^j, [/mm] mit [mm] a_0 [/mm] ,..., [mm] a_k \in K^n [/mm]  und [mm] a_k [/mm] != 0, ein [mm] K^n-wertiges [/mm] Polynom vom Grad k.
Zu zeigen:
es gibt genau dann ein Polynom q : R → [mm] K^n [/mm] vom Grad k derart, dass x(t) := q(t) [mm] exp(\lambda [/mm] t) eine
  spezielle Lösung ist des Systems
x'(t) = Ax(t) + [mm] p(t)exp(\lambda [/mm] t)

Meine Lösung:
Sei [mm] b:=p(t)exp(\lambda [/mm] t) . für die gesuchte Lösung schreibt man x(t)= [mm] exp(\lambda [/mm] t) [mm] \sum_{j=0}^k x_j t^j. [/mm]
Einsetzen in das System liefert:
[mm] exp(\lambda [/mm] t) [mm] *\sum_{j=0}^k (x_{j+1} [/mm] + [mm] (\lambda -A)x_j [/mm] - [mm] b_j)*t^j=0. [/mm] Dabei ist [mm] x_{k+1} [/mm] =0 zu setzen.
Da [mm] t^k [/mm] linear unabhängig sind, folgt
[mm] (\lambda -A)x_j =b_j-x_{j+1} [/mm] , j=0,...,k
Also mit [mm] \lambda \notin [/mm] σ(A) folgt:
[mm] x_j =(\lambda [/mm] -A)^-1 [mm] (b_j-x_{j+1}) [/mm]    j=0,...,k



Stimmt der Weg bzw. wie könnte man es anders machen:)?
ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Existenz des Polynoms: Antwort
Status: (Antwort) fertig Status 
Datum: 08:24 Do 24.05.2018
Autor: fred97


> Es sei A eine quadratische konstante Matrix und λ [mm]\notin[/mm]
> σ(A) kein Eigenwert von A. Weiter bezeichne
>  p = p(t) := [mm]\sum_{j=0}^k a_j t^j,[/mm] mit [mm]a_0[/mm] ,..., [mm]a_k \in K^n[/mm]
>  und [mm]a_k[/mm] != 0, ein [mm]K^n-wertiges[/mm] Polynom vom Grad k.
> Zu zeigen:
> es gibt genau dann ein Polynom q : R → [mm]K^n[/mm] vom Grad k
> derart, dass x(t) := q(t) [mm]exp(\lambda[/mm] t) eine
>    spezielle Lösung ist des Systems
>  x'(t) = Ax(t) + [mm]p(t)exp(\lambda[/mm] t)
>  Meine Lösung:
>  Sei [mm]b:=p(t)exp(\lambda[/mm] t) . für die gesuchte Lösung
> schreibt man x(t)= [mm]exp(\lambda[/mm] t) [mm]\sum_{j=0}^k x_j t^j.[/mm]
>  
> Einsetzen in das System liefert:
>  [mm]exp(\lambda[/mm] t) [mm]*\sum_{j=0}^k (x_{j+1}[/mm] + [mm](\lambda -A)x_j[/mm] -
> [mm]b_j)*t^j=0.[/mm]


Das sollte aber

(*) [mm]exp(\lambda[/mm] t) [mm]*\sum_{j=0}^k (x_{j+1}[/mm] + [mm](\lambda -A)x_j[/mm] - [mm]a_j)*t^j=0.[/mm]

lauten.

> Dabei ist [mm]x_{k+1}[/mm] =0 zu setzen.

O.K.


>  Da [mm]t^k[/mm] linear unabhängig sind,


Mit Verlaub,  das ist Quatsch !  Es ist doch [mm] t^k \in [/mm] K !!

Wegen [mm] e^{ \lambda t} \ne [/mm] 0 folgt aus (*):

[mm]\sum_{j=0}^k (x_{j+1}[/mm] + [mm](\lambda -A)x_j[/mm] - [mm]a_j)*t^j=0.[/mm]

Mit Koeffizientenvergleich bekommen wir dann

[mm](\lambda -A)x_j =a_j-x_{j+1}[/mm] , j=0,...,k

und damit

[mm]x_j =(\lambda[/mm] [mm] -A)^{-1}[/mm]  [mm](a_j-x_{j+1})[/mm]    j=0,...,k

Jetzt kann man rückwärts die [mm] x_j [/mm] ausrechnen, erst [mm] x_k [/mm] (es ist ja [mm] x_{k+1}=0), [/mm] dann [mm] x_{k-1}, [/mm] etc. ,,,, bis [mm] x_0. [/mm]

Damit ist gezeigt: ein Polynom q mit den gewünschten Eigenschaften ist vorhanden und weil obiges LGS für die [mm] x_j [/mm] eindeutig lösbar ist, ist q auch eindeutig bestimmt.



>  folgt
> [mm](\lambda -A)x_j =b_j-x_{j+1}[/mm] , j=0,...,k
>  Also mit [mm]\lambda \notin[/mm] σ(A) folgt:
>  [mm]x_j =(\lambda[/mm] -A)^-1 [mm](b_j-x_{j+1})[/mm]    j=0,...,k
>  
>
>
> Stimmt der Weg bzw. wie könnte man es anders machen:)?
>  ch habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 11m ago 6. Dom_89
UAnaRn/Extrema bestimmen
Status 1h 36m ago 1. Ataaga
SGeradEbene/Abstand eines Punktes
Status 1h 48m ago 5. Dom_89
ULinAAb/Kern und Bild bestimmen
Status 2h 14m ago 3. Dom_89
DiffGlGew/Anwenden der Substitution
Status 5h 13m ago 2. fred97
IntTheo/mehrdim. part. Int., Doppelint
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]