matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Grenzwert berechnen
Grenzwert berechnen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert berechnen: Mit Hilfe von e
Status: (Frage) beantwortet Status 
Datum: 11:50 So 10.06.2018
Autor: Pacapear

Aufgabe
Berechnen Sie mit Hilfe des Grenzwertes [mm] $\lim_{x \to \infty} \left( 1 + \frac{a}{x} \right)^x [/mm] = [mm] e^a$ [/mm] folgenden Grenzwert:

[mm] $\lim_{x \to \infty} \left( \frac{x+2}{x-2} \right)^x$ [/mm]

Hallo zusammen!

Mir fehlt eine Ansatzidee, um den Grenzwert [mm] $\lim_{x \to \infty} \left( \frac{x+2}{x-2} \right)^x$ [/mm] zu berechnen.

Ich habe es z.B. schon über erweitern zu binomischen Formeln, ausklammern oder Bruch auseinander ziehen versucht. Aber keiner dieser Ansätze brachte mich irgendwie weiter.

Hat jemand eine Idee?

Danke und VG,
Nadine

        
Bezug
Grenzwert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 So 10.06.2018
Autor: Marc

Hallo Nadine,

> Hat jemand eine Idee?

Es müsste dich [mm] $\frac{x+2}{x-2}=\frac{x-2+4}{x-2}=...$ [/mm] weiter bringen...

Viele Grüße
Marc

Bezug
                
Bezug
Grenzwert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 So 10.06.2018
Autor: Pacapear

Hallo Marc!

> Es müsste dich [mm]\frac{x+2}{x-2}=\frac{x-2+4}{x-2}=...[/mm]
> weiter bringen...

Mit deinem Ansatz bin ich jetzt so weit gekommen:

$ [mm] \lim_{x \to \infty} \left( \frac{x+2}{x-2} \right)^x [/mm] $

$ = [mm] \lim_{x \to \infty} \left( \frac{x-2+4}{x-2} \right)^x [/mm] $

$ = [mm] \lim_{x \to \infty} \left( \frac{x-2}{x-2} + \frac{4}{x-2} \right)^x [/mm] $

$ = [mm] \lim_{x \to \infty} \left( 1 + \frac{4}{x-2} \right)^x [/mm] $

Jetzt hänge ich daran, noch die "-2" im Nenner wegzukriegen, damit ich den Grenzwert der e-Funktion verwenden kann.

Gibt es da auch noch einen Trick?

Danke und VG,
Nadine

Bezug
                        
Bezug
Grenzwert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 So 10.06.2018
Autor: angela.h.b.


Hallo,

> [mm]= \lim_{x \to \infty} \left( 1 + \frac{4}{x-2} \right)^x[/mm]

Du könntest es so machen:

=[mm]= \lim_{x \to \infty} \left( 1 + \frac{4}{x} \right)^{x+2}[/mm]

LG Angela



Bezug
                                
Bezug
Grenzwert berechnen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:14 So 10.06.2018
Autor: Pacapear


> Du könntest es so machen:
>  
> =[mm]= \lim_{x \to \infty} \left( 1 + \frac{4}{x} \right)^{x+2}[/mm]
>  
> LG Angela

Oh wow!  

Ja, damit bekomme ich [mm] e^4 [/mm] als Erbenis.

Vielen Dank!

VG Nadine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status 11m ago 6. Dom_89
UAnaRn/Extrema bestimmen
Status 1h 36m ago 1. Ataaga
SGeradEbene/Abstand eines Punktes
Status 1h 48m ago 5. Dom_89
ULinAAb/Kern und Bild bestimmen
Status 2h 14m ago 3. Dom_89
DiffGlGew/Anwenden der Substitution
Status 5h 13m ago 2. fred97
IntTheo/mehrdim. part. Int., Doppelint
^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]