matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

For pupils, students, teachers.
Hello Guest!Log In | Register ]
Home · Forum · Knowledge · Courses · Members · Team · Contact
Navigation
 Home...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Tools...
 Agency for private tuition beta...
 Online Games beta
 Search
 Registered Society...
 Contact
Forenbaum
^ Tree of Forums
Status Maths
  Status School
    Status Grades 1-4
    Status Grades 5-7
    Status Grades 8-10
    Status Grades 11-12
    Status Mathematical Contest
    Status School maths - Miscellaneous
  Status University
    Status Uni-Calculus
    Status Uni-LinA u. Algebra
    Status Algebra and Number Theoriy
    Status Discrete Mathematics
    Status Teaching Methodology
    Status Financial Maths and Actuarial Theory
    Status Logic and Set Theory
    Status 
    Status Stochastic Theory
    Status Topology and Geometry
    Status Uni Maths - Miscellaneous
  Status Courses on maths
    Status 
    Status 
    Status Universität
  Status Software for maths
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Calculators

Only forums with an interest level bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
The project is organised by our team of coordinators.
Hundreds of members help out in our moderated forums.
Service provider for this webpage is the Registered Society "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Äquivalenz von Normen
Äquivalenz von Normen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz von Normen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:27 Do 28.11.2019
Autor: Steve96

Hallo!

Ich habe eine Frage bezüglich folgender Definition:


______________________________________________________

Die Normen [mm] $\vert \vert \cdot \vert \vert$ [/mm] und  [mm] $\vert \vert \cdot \vert \vert [/mm] '$ auf $V$ heißen äquivalent, falls


[mm] $\exists [/mm] c, C >0 [mm] \; \forall [/mm] x [mm] \in [/mm] V: c [mm] \vert \vert \cdot \vert \vert \le \vert \vert \cdot \vert \vert [/mm] ' [mm] \le [/mm] C [mm] \vert \vert \cdot \vert \vert$ [/mm]
______________________________________________________


Also, ich verstehe ja die Definition. Man kann die Norm $ [mm] \vert \vert \cdot \vert \vert [/mm] ' $ abschätzen durch eine andere Norm [mm] $\vert \vert \cdot \vert \vert [/mm] $.

Aber ich verstehe nicht den tieferen Sinn dahinter. Hat diese Definition eine tieferen Sinn ? Vielleicht geometrisch?


Ich meine, die Definition des Skalarprodukts hat mir am Anfang auch nichts gesagt, aber erst im Nachhinein habe ich gemerkt, dass die Definition aus einer geometrischen Intuition entstanden ist.



Hier versuche ich nun das selbe herauszufinden. Die Definition von Äquivalenz zweier Normen sagt mir nicht wirklich was. Steckt da mehr dahinter ? Vielleicht auch geometrisch ? Oder mache ich mir unnötig Gedanken darüber? Ich meine, warum sollte man sonst so eine Definition einführen?



Warum werden beide Normen dann "äquivalent" genannt? Äquivalent bedeutet ja "gleichwertig", aber was hat dieser Begriff mit dieser Ungleichung zu tun? Wo ist da etwas gleichwertig? Bin in der Hinsicht etwas verwirrt.



Hoffe, mir kann jemand helfen :-D

lg, Steve

        
Bezug
Äquivalenz von Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Do 28.11.2019
Autor: fred97

Also: V sei versehen mit zwei Normen [mm] $||\cdot||$ [/mm] und  [mm] $||\cdot||'$ [/mm]  und diese beiden Normen seien äquivalent.

Dann erzeugen beide Normen die gleiche Topologie, d.h.:

ist M eine Teilmenge von V, so ist M offen bezüglich [mm] $||\cdot||$ [/mm]  genau dann , wenn M offen bezüglich [mm] $||\cdot||'$ [/mm]  ist.

Weiter: ist [mm] (x_n) [/mm] eine Folge in V und x [mm] \in [/mm] V, so gilt:

[mm] (x_n) [/mm] konvergiert bezüglich [mm] $||\cdot||$ [/mm]  gegen x genau dann, wenn [mm] (x_n) [/mm] bezüglich [mm] $||\cdot||'$ [/mm] gegen x konvergiert.

Noch eine Kostprobe: $(V, [mm] ||\cdot||)$ [/mm] ist ein Banachraum, genau dann wenn  $(V, [mm] ||\cdot||')$ [/mm] ein Banachraum ist.



Bezug
        
Bezug
Äquivalenz von Normen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:17 Do 28.11.2019
Autor: Steve96

Ah, jetzt macht das etwas Sinn.

Der Name "äquivalent" kommt also daher, weil durch diese Ungleichung sich für beide Normen  in manchen Fällen äquivalente Bedingungen ergeben?

Also z. B, dass $(V, [mm] \vert \vert \cdot \vert \vert)$ [/mm] ein Banachraum ist, unter der Bedingung, dass   $(V, [mm] \vert \vert \cdot \vert \vert')$ [/mm] ein Banachraum ist, und umgekehrt.

Habe ich Recht?


Sonst habe ich keine anderen Fragen mehr. Danke für die Hilfe :-)


lg, Steve

Bezug
                
Bezug
Äquivalenz von Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Do 28.11.2019
Autor: fred97


> Ah, jetzt macht das etwas Sinn.

Etwas ?


>  
> Der Name "äquivalent" kommt also daher, weil durch diese
> Ungleichung sich für beide Normen  in manchen Fällen
> äquivalente Bedingungen ergeben?

Na ja, woher "äquivalent " kommt, kann ich Dir nicht genau sagen. Aber vielleicht ist folgendes hilfreich:

Sei V ein Vektorraum (über [mm] \IR [/mm] oder [mm] \IC). [/mm] Nun betrachten wir die Menge N aller Normen auf V und definieren eine Relation R auf $N [mm] \times [/mm] N$ wie folgt:  für $ || [mm] \cdot|| \in [/mm] N$ und $ || [mm] \cdot||' \in [/mm] N$  def. wir

$ || [mm] \cdot|| [/mm] R  || [mm] \cdot||' \gdw [/mm]   || [mm] \cdot|| [/mm] $ und  $|| [mm] \cdot||' [/mm] $ sind äquivalent.

Dann ist leicht zu sehen, dass R eine Äquivalenzrelation ist.


>  
> Also z. B, dass [mm](V, \vert \vert \cdot \vert \vert)[/mm] ein
> Banachraum ist, unter der Bedingung, dass   [mm](V, \vert \vert \cdot \vert \vert')[/mm]
> ein Banachraum ist, und umgekehrt.
>  
> Habe ich Recht?

Ja


>  
>
> Sonst habe ich keine anderen Fragen mehr. Danke für die
> Hilfe :-)
>  
>
> lg, Steve


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathspace.org
[ Home | Forum | Knowledge | Courses | Members | Team | Contact ]